
PredicateWindow
Remark: This window is . It can simulate any other window, but if not necessary, you very complex and may somethime not behave as expected
should prefer or TimeWindow ElementWindow

The predicate window opens and closes the window regarding a start and optional an end condition. Elements that are not inside a window are discarded
and send to output port 1.

The operator works as follows:

It checks, if the is reached. In this case all internal buffers for each group are cleared (and the content is send to the output first maxWindowTime
when is true), where the first element is older than the given threshold.outputIfMaxWindowTime
After then, it checks, if is set and closes all buffers where the last element has reached the buffer a time closeWindowAfterNoupdatesFor
longer than the parameter.
The operator determines the group () for the current input.partition

After that, if set, the condition is checked for the current group and the current input. clear

If the window for this group (this means, that the) the is already opened some elements before start predicates has been evaluated to true
next step is to check,

if the is true. Then the operator creates an . Typically, the whole window is written and the buffer is cleared. With conditionend output
the and condition, this behaviour can be changed.clear advanceWhen
if the is false, the current element is added to the window and kept inside the operator. conditionend

If the window for this group , the condition is checked. It the condition is true, the operator and adds is not opened start opens a new window
the current element to the window.

the end predicate is ignored in this case, you could use to allow single element windows! Attention, in this allowSameStartAndEndTS
case, the produced result is not really valid (as start and end timestamp are the same) and you need to do some window processing
afterwards.

For the output there are different configurations:

samestarttime: Each element in the output will get the same starttime, i.e. the starttime from the first element. This could be used in Aggregate
 to get only a single result for a complete window.(and Group) operator

nesting: In Odysseus the output is typically a set of elements that are send one after the other. If this flag is set to true, the output of the window
is a single list, with all elements from the window. This can be advantage, if the processing afterwards treats the elements together (e.g. in a MAP-
Operation). sets the time for each element in the list, the list get the union of all intervals inside the list.Samestarttime

To simulate some kind of sliding window, the following parameters can be used:

AdvanceWhen: This condition checks, if the window should move, i.e. if elements in the current buffer (for the current group) should be removed.
If this predicate evalutes to true, the next parameter is used to determine which number of elements the move of the window should be
AdvanceSize: This size tells the operator if cases of is true, how many elements should be removed from the start of the current AdvanceWhen
window. If the value is below 0 or the current window has less elements that this value, the buffer is cleared.

Remark: Advance is only used, if an output is generated and will be used after the results are produced. To clear the buffer independent of an output, clear
needs to be used.

Parameters

start: The start condition for a predicate window. If the condition evaluates to true, the windows is opened until the end predicate evaluates to
true (or if not given the start predicate evaluates to false). Note, that all elements that are not inside a window are send to ouput port 1
end: The end condition for a predicate window. The tuple for which this condition is evaluated to true is only part of the result, if keepEndingEle

is set to true!ment
clear: If this parameter is set, the window will only be cleared, if the is true. By this, the same element can be part of multiple windows condition
(sliding)
sameStartTime: If set to true, all produced elements get the same start timestamp
size: The maximum size of the window. Can be either a single number or a pair of a number and a time unit. Possible values for the unit are
one of like SECONDS, NANOSECODS etc. - default time is the base time of the stream (typically milliseconds)TimeUnit
keepEndingElement: Typically, the object that fulfils the end condition will not be part of the result. If setting this attribute to true, the element
will be part
partition: Evaluate the predicates on partitioned defined by different values of this attribute (similar to group by in aggreation)
useElementOnlyForStartOrEnd: Typically, an object is used to evaluate and an element can be used the start and the end condition for

and can be part of multiple windows, i.e. the same element can be used to close a window and open a new window. If set to , both true only the
 will be evaluted, i.e. an element be used to close an open window and use the same element to open a new start or end predicate cannot

window.
keepTimeOrder: If set to false, the ouput generation does not care about order. Typically, this makes only sense when using nesting=true!
closeWindowWithHeartbeat: if true, the window is closed when a heartbeat is received. Take a look at the to see how it session window
works.
closeWindowAfterNoupdatesFor: A time parameter by which the window could be closed if some time no new element reaches the buffer.
Mostly makes sense for partioned windows but works also with heartbeats.
closeWindowAfterNoUpdateTimePort: In cases, the window closes because of this port is used for closeWindowAfterNoUpdateTime
the output. Default is 0, i.e. the default output port. This can be used to handle outputs of this kind differently.
nesting: Default false. If set to true, elements that are grouped together are written in a single object as list.

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/TimeWindow
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/ElementWindow
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Aggregate+%28and+Group%29+operator
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Aggregate+%28and+Group%29+operator
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/TimeUnit.html#enum_constant_summary
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/SessionWindow

Parameters for MaxWindowTime

maxWindowTime: The maximum possible age of a window. If reached, the current window is closed.
outputIfMaxWindowTime: A window can close by condition or when maxWindowTime is reached. Set to false to avoid writing in case of
maxWindowTime (default is true)
maxWindowTimeOutputPort: A special output port can be defined to allow to write in cases where maxWindowTime is reached to this port.
Default is 0, i.e. the default output port.

Remark: This is a blocking operator. The operator does not write elements before it sees new elements not belonging to the window anymore (similiar to El
)ementWindow

Example

In the following we provide some examples and the corresponding output.

As input, we assume the following simple input:

ID Time isLast
A 1 false
A 2 false
A 3 false
A 4 true
B 5 false
B 6 false
B 7 false
B 8 false
B 9 false
B 10 true
C 11 false
C 12 false
C 13 false
C 14 false
C 15 false
C 16 false

Preprocessing

With some preprocessing (to allow more examples)

#PARSER PQL
#ADDQUERY
in = CSVFILESOURCE({SCHEMA = [['ID', 'String'],['pos','STARTTIMESTAMP'],['isLast','Boolean']], DELIMITER =
'\t', SOURCE = 'source', FILENAME = '${PROJECTPATH}/input.csv'})

map = STATEMAP({EXPRESSIONS = [['isNull(__last_1.ID) OR (__last_1.ID != ID)','newElem']], KEEPINPUT = true}, in)

we will get:

As you can see, the new field is added, that is set to true, if it is or if the element is .newElem the first element different that the last element

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/ElementWindow
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/ElementWindow

Using only a start predicate

win = PREDICATEWINDOW({start = 'newElem', SAMESTARTTIME = true}, map)

will result in:

Here the window is and is . All elements between these opened for every true evaluation of the start condition closed for every evaluation of !start
elements are discarded. They do not open a new window. This may not be, what you expect!

By this, you could keep a window open .as long the start condition is true

Using an end predicate

win = PREDICATEWINDOW({start = 'true', end = 'newElem', SAMESTARTTIME = true}, map)

Here each time a new window opens, the old window is closed, i.e. the same input element is responsible for starting and closing a window. The output
contains two windows, one from 1 to 5 and one from 5 to 11. , the out starting from C (at 11) is discarded. Use As the final window is not closed
DrainAtDone = true, to allow the output of these elements.

Using a start and an end predicate and keeping the ending element:

win = PREDICATEWINDOW({start = 'newElem', end = 'isLast', KEEPENDINGELEMENT = true, SAMESTARTTIME = true}, map)

will result in:

Remark the difference: This operator blocks only until the end predicate is reached. This works only, if samestarttime is set to true, else e.g. A|4|true|false |
META | 1|4 would be A|4|true|false | META | 4|4, this has no validitiy and will not be produced.

When you want to close the window with closing the stream, you could as always use DrainAtDone=true.

win = PREDICATEWINDOW({start = 'newElem', end = 'isLast', KEEPENDINGELEMENT = true, SAMESTARTTIME = true,
DRAINATDONE = true}, map)

Using predicate window to simulate standard windows

The predicate window can be used to simulate other windows. Remark: This is only for demonstration purposes as the element and time window are much
faster!

All the following examples use this source:

#PARSER PQL
#RUNQUERY
timer = TIMER({
 period = 1000,
 source = 'timer'
 }
)

ticker := MAP({
 expressions = [['counter()','tick'],['TimeInterval.START','TS']]
 },
 timer
)

Element Window

#PARSER PQL
#IFSRCNDEF ticker
#INCLUDE ${PROJECTPATH}/TickerSource.qry
#ENDIF

#ADDQUERY
/// Tumbling element window
out = PREDICATEWINDOW({
 /// Start window with every element
 start = "true",
 /// close window, when size of buffer is 5
 end = "size(__all)==5",
 /// output as list
 nesting = true
 },
 ticker
)

#PARSER PQL
#IFSRCNDEF ticker
#INCLUDE ${PROJECTPATH}/TickerSource.qry
#ENDIF

#ADDQUERY
/// Sliding element window
out = PREDICATEWINDOW({
 /// start window with every element
 start = "true",
 /// If set to false, end element is not part of result
 KEEPENDINGELEMENT = true,
 /// end predicate is tested before element is added to window
 /// thats why size(__all) must be one below window size!
 end = "size(__all)=2",
 /// Move window when size of window is 3
 ADVANCEWHEN = 'size(__all)=3',
 /// move by one position
 ADVANCESIZE = 1,
 /// output as list
 nesting = true
 },
 ticker
)

Time Window

#PARSER PQL
#IFSRCNDEF ticker
#INCLUDE ${PROJECTPATH}/TickerSource.qry
#ENDIF

#ADDQUERY
/// Tumbling time window
out = PREDICATEWINDOW({
 start = "true",
 end = "!isNull(__first.TS) && __first.TS + 10 < TS",
 nesting = true
 },
 ticker
)

	PredicateWindow

