
LineSender
You could use the program to provide sample input from a file to Odysseus.LineSender

The source code can be found here: https://git.swl.informatik.uni-oldenburg.de/projects/ODYDATGEN/repos/linesender/browse

A jar can be downloaded here: runnable https://odysseus.informatik.uni-oldenburg.de/download/linesender/linesender.jar

Use

java -jar linesender.jar

to see a list of parameters:

Usage: LineSender [-hrsV] [-d=<delay>] [-p=<port>] <path>
Sends a csv file to a tcp socket connection
 <path> The file whose checksum to calculate.
 -d, --delay=<delay> Delay ms between each line sent.
 -h, --help Show this help message and exit.
 -p, --port=<port> The server port.
 -r, --repeat Repeat the file when ended. Default is false.
 -s, --skip Skip the first line in csv, e.g. because of table
 header. Default is false.
 -V, --version Print version information and exit.

This program reads a CSV file and sends each CSV file via TCP to a connected TCP client. For each new connected client, the reading starts from the
beginning of the file. If you set the repeat flag, the content of the CSV file is sent again and again to simulate a never ending input stream. You could limit
the data rate with the delay flag.

Example

If you have the following CSV file:

a;1;1.0
b;2;2.0
c;3;3.0
d;4;4.0
e;5;5.0

and you have started the sender on port 9876. You could use the following Odysseus query to access the content:

#PARSER PQL
#ADDQUERY
in = ACCESS({
 transport = 'tcpclient',
 source = 'source_test',
 datahandler = 'tuple',
 wrapper = 'GenericPush',
 protocol = 'SimpleCSV',
 options = [['host','localhost'],['port','9876'],['delimiter',';']],
 schema=[
 ['A', 'String'],
 ['B', 'Integer'],
 ['C', 'Double']
]
 }
)

Remark: If you use repeat, you need to assure at the client side, that the timestamps are increasing. In the above example this is simply done by using
system time but when using application time (i.e. providing timestamp datatypes) you will need to increase the timestamps manually,

https://git.swl.informatik.uni-oldenburg.de/projects/ODYDATGEN/repos/linesender/browse
https://odysseus.informatik.uni-oldenburg.de/download/linesender/linesender-0.0.1-SNAPSHOT-jar-with-dependencies.jar

in_prep = STATEMAP({
 keepinput = true,
 expressions = [
 ['!isNull(__last_1.B) && __last_1.B > B','nextRound']
]
 },
 in
)

in_ts = TIMESTAMP({
 start = 'B+condcounter(nextRound)*10'
 },
 in_prep
)

Here, we first check, if the new start timestamp is lower than the old one. This means, the input file has started from the beginning and is set to nextRound
true.

Then the TIMESTAMP operator creates timestamps from the B attribute values and increases the each time, is true. Here we use concounter nextRound
10 as a maximum value.

	LineSender

