Select syntax

Continuous Query

In summary, a CQL statement is like a SQL one, so the continuous query consists of a select, a from, a where, a goup and a having part.

We use the following example to explain basic details of CQL-Query.

SELECT auction, AVQ price) AS aprice

FROM bid [SI ZE 60 M NUTES ADVANCE 1 M NUTE TI ME]

VWHERE auction > 10
GROUP BY auction
HAVI NG apri ce<100. 0

Select

SELECT auction, AVG@ price) AS aprice...

From

FROM bid [SI ZE 60 M NUTES ADVANCE 1 M NUTE TI Me]. ..

The most different parts between usual SQL and CQL is the FROM part, because you have the possibility to definie windows. CQL defines them by

squared brackets.

There are 3 different windows you can define: an unbounded window, a time-based window and a tuple-based window.

An unbounded window is defined by the keyword UNBOUNDED. It sets the end timestamp to infinite. Example:

SELECT * FROM bi d [UNBOUNDED]

Since an unbounded window does not limit the validity of a stream element (in fact it is not really a window), the declaration of UNBOUNDED is optional.
You get the same result without a window declaration. You can use the UNBOUNDED keyword to highlight that no window is defined.

A time-based window is defined by the size of the window as time span and an optional advance parameter. The latter defines after what time span the
window should move (if no unit is declared, it has the same unit as size). Additional, a partition attribute can be defined. Syntax:

SELECT * FROM <source> [S| ZE <si ze> <unit> TI M|

SELECT * FROM <source> [SI ZE
SELECT * FROM <source> [S| ZE
SELECT * FROM <source> [S| ZE
SELECT * FROM <source> [SI ZE

SELECT * FROM <source> [SI ZE
attribute>]

<si ze>

<si ze>

<si ze>

<si ze>

<si ze>

For valid values for <unit> see TimeWindow.

<uni t > ADVANCE <advance size> TI Mg]

<uni t> ADVANCE <advance size> <unit> Tl Mg]

<uni t> TI ME PARTI TI ON BY bi d. aucti on]

<uni t > ADVANCE <advance si ze> TI ME PARTI TION BY <partition attribute>]

<uni t > ADVANCE <advance size> <unit> TIME PARTI TI ON BY <partition

A tuple-based window is defined by the size of the window as number of tuples and an optional advance parameter. The latter defines after how many
tuples the window should move. Additional, a partition attribute can be defined. Syntax:

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/TimeWindow

SELECT * FROM <source> [Sl ZE <si ze> TUPLE]
SELECT * FROM <source> [SlI ZE <si ze> ADVANCE <advance si ze> TUPLE]
SELECT * FROM <source> [S| ZE <si ze> TUPLE PARTI TI ON BY bi d. aucti on]

SELECT * FROM <source> [Sl ZE <si ze> ADVANCE <advance si ze> TUPLE PARTI TI ON BY <partition attribute>]

Futher information about windows can be found here

Where

WHERE auction > 10 ...

Group By and Having

GROUP BY auction
HAVI NG apri ce<100. 0

Stream To

If you want to stream your results into a sink, you first have to create a sink.

STREAM TO wri t eout SELECT * FROM nexmar k: per son WHERE. . .

This example would push all data that is produced by "SELECT * FROM nexmark:person WHERE..." into the sink named writeout, which is a file-writer in
our case (see above).

Examples

Here are some language examples what can be used in the select-part of a CQL-Statement

#PARSER CQL

#TRANSCFG St andar d

#DOREWRI TE f al se

#QUERY

DROP STREAM bid | F EXI STS

#QUERY

ATTACH STREAM bid (tinestanp STARTTI MESTAMP, auction | NTEGER, bidder | NTEGER, datetime LONG price DOUBLE)
CHANNEL | ocal host : 65442

#QUERY

DROP STREAM person | F EXI STS

#QUERY

ATTACH STREAM person (tinestanp STARTTI MESTAMP, i d | NTEGER, nane STRI NG enmil STRING creditcard STRING city
STRI NG state STRING CHANNEL | ocal host : 65440

/11 SI MPLE PROJIECTS

#QUERY

SELECT * FROM bid

#QUERY

SELECT bid.* FROM bid

#QUERY

SELECT price FROM bid

#QUERY

SELECT bi dder, price FROM bid

#QUERY

SELECT tinestanp, auction, bidder, datetinme, price FROM bid

https://wiki.odysseus.informatik.uni-oldenburg.de/pages/viewpage.action?pageId=4587829
http://nexmarkperson

/11 PROIECTS W TH RENAMED SOURCE BUT NO USE | N PRQIECT
#QUERY

SELECT * FROM bid AS b

#QUERY

SELECT bid.* FROM bid AS b

#QUERY

SELECT price FROM bid AS b

#QUERY

SELECT bi dder, price FROMbid AS b

#QUERY

SELECT timestanp, auction, bidder, datetine, price FROM bid AS b
/11 PROJECTS W TH RENAMED SOURCE W TH USE | N PRQJECT
#QUERY

SELECT * FROM bid AS b

#QUERY

SELECT b.* FROM bid AS b

#QUERY

SELECT b.price FROM bid AS b

#QUERY

SELECT b. bi dder, b.price FROM bid AS b

#QUERY

SELECT b.timestanp, b.auction, b.bidder, b.datetime, b.price FROMbid AS b
/11 PROJECTS W TH RENAMED ATTRI BUTES

#QUERY

SELECT price AS p FROM bid

#QUERY

SELECT price AS p, bidder FROM bid

#QUERY

SELECT price AS p, bidder AS b FROM bid

/1] PRQIECTS WTH RENAMED ATTRI BUTES AND SOURCES
#QUERY

SELECT price AS p FROM bid AS b

#QUERY

SELECT b.price AS p FROM bid AS b

#QUERY

SELECT b.price AS p, b.bidder FROM bid AS b

#QUERY

SELECT b.price AS p, b.bidder AS b FROMbid AS b

/11 PROJECTS W TH CONSTANTS, FUNCTI ONS AND EXPRESSI ONS

#QUERY

SELECT bi dder + price AS d FROM bid

#QUERY

SELECT 123.4 * price AS d FROM bid

#QUERY

SELECT 123.4 AS d FROM bi d

#QUERY

SELECT 123.4 AS d, price FROM bid

#QUERY

SELECT Dol ToEur (price) AS d FROM bid

#QUERY

SELECT Dol ToEur (price) AS d, price FROM bid
#QUERY

SELECT Dol ToEur (price) * auction AS d FROM bid
#QUERY

SELECT Dol ToEur (price) * price AS d FROM bid
#QUERY

SELECT Dol ToEur (price) * auction AS d, price FROM bid
#QUERY

SELECT Dol ToEur (123.4) AS d FROM bid

#QUERY

SELECT 'test' AS s FROM bid

#QUERY

SELECT 'test' AS's, 123.4 AS d FROM bid
#QUERY

SELECT 'test' AS's, 123.4 AS d, price FROM bid

/1] PROIECTS AND SELECTS W TH RENAMED SOURCE W TH USE | N SELECT
#QUERY

SELECT * FROM bid AS b WHERE b. bi dder > 10

#QUERY

SELECT b.* FROM bid AS b WHERE b. bi dder > 10

#QUERY

SELECT b.price FROM bid AS b WHERE b. price < 150.0

#QUERY

SELECT b. bidder, b.price FROM bid AS b WHERE b. bidder = 1

#QUERY

SELECT b.tinestanp, b.auction, b.bidder, b.datetinme, b.price FROMbid AS b WHERE b. price > 100.0
/1] PRQIECTS W TH RENAMED ATTRI BUTES

#QUERY

SELECT price AS p FROM bid WHERE p < 100

#QUERY

SELECT price AS p, bidder FROM bid WHERE p > 100
#QUERY

SELECT price AS p, bidder AS b FROM bi d WHERE b=1 AND p <100

/11 AGGREGATES ARE NOT HANDLED LI KE FUNCTI ONS AND MAY HAVE A GROUPI NG ETC.
#QUERY

SELECT AVG(price) AS aprice FROM bid

#QUERY

SELECT AVGE price) AS aprice FROM bid GROUP BY auction

#QUERY

SELECT auction, AVG@ price) AS aprice FROM bid GROUP BY auction

#QUERY

SELECT auction, AVQE price) AS aprice FROM bi d GROUP BY auction HAVI NG apri ce<100.0
/11 JONS AND SELFJO NS

#QUERY

SELECT auction, bidder FROM bid, person WHERE bi d. bi dder = person.id
#QUERY

SELECT auction FROM bid AS b, person AS p WHERE b. bidder = p.id
#QUERY

SELECT auction AS a, bidder AS b FROM bid, person WHERE a = b
#QUERY

SELECT auction, bidder FROM bid, person WHERE bi d. bi dder = person.id
#QUERY

SELECT left.* FROM bid AS left, bid AS right WHERE | eft. bi dder = right. bi dder
#QUERY

SELECT a. auction AS aid FROM bid AS a, bid AS b WHERE ai d=b. aucti on

And here are examples, based on nexmark, that are more complex

#PARSER CQL

#TRANSCFG St andar d

#DROPALLQUERI ES

#DROPALL SOURCES

#QUERY

CREATE STREAM nexnar k: person (tinestanp STARTTI MESTAMP, id I NTEGER, nane STRING enmil STRING creditcard
STRING city STRING state STRING CHANNEL | ocal host : 65440

#QUERY

CREATE STREAM nexmar k: bid (tinestanp STARTTI MESTAMP, auction | NTEGER, bidder | NTEGER, datetine LONG price
DOUBLE) CHANNEL | ocal host : 65442

#QUERY

CREATE STREAM nexmar k: auction (timestanp STARTTI MESTAMP, id | NTEGER, itemane STRING description STRI NG
initialbid | NTEGER, reserve |NTECER, expires LONG seller INTEGER, category |NTEGER) CHANNEL | ocal host : 65441
#QUERY

CREATE STREAM nexnar k: category (id | NTEGER, name STRING description STRING parentid | NTEGER) CHANNEL

| ocal host : 65443

#PARSER CQL

#TRANSCFG St andar d

#DROPALLQUERI ES

/11 Query 1: Currency Conversion

#QNAVE Nexmar k: QL

#ADDQUERY

SELECT auction, Dol ToEur(price) AS euro, bidder, datetine
FROM nexnar k: bi d [UNBOUNDED ;

/1] Query 2: Selection

#QNAVE Nexmar k: Q2

#ADDQUERY

SELECT auction, price

FROM nexnar k: bi d

VWHERE auction=7 OR auction=20 OR auction=21 OR auction=59 OR aucti on=87;

/11 Query 3: Local |tem Suggestion

#QNAVE Nexmar k: B

#ADDQUERY

SELECT p.nane, p.city, p.state, a.id

FROM nexnar k: aucti on [UNBOUNDED] AS a, nexmark: person [UNBOUNDED] AS p

WHERE a.seller=p.id AND (p.state="Oregon' OR p.state='ldaho' OR p.state='California') AND a.category = 10;

/11 Query 4: Average Price for a Category

#QNAVE Nexmar k: Q4

#ADDQUERY

SELECT AVE g. final)

FROM nexnar k: cat egory [UNBOUNDED] AS c,
(SELECT MAX(b.price) AS final, a.category
FROM nexmar k: aucti on [UNBOUNDED] AS a, nexmark: bid [UNBOUNDED] AS b
VWHERE a.id = b.auction AND b.datetinme < a.expires AND a.expires < Now()
GROUP BY a.id, a.category) AS q

VWHERE q. category = c.id

GROUP BY c.id;

/1] Query 5: Hot Itens
#QNAVE Nexmar k: Q6
#ADDQUERY
SELECT b2. auction
FROM (SELECT bl. auction, COUNT(auction) AS num
FROM nexmar k: bid [SI ZE 60 M NUTES ADVANCE 1 M NUTE Tl ME] AS bl
GROUP BY bl.auction
) AS b2
VWHERE num >= ALL (SELECT count (auction) AS c
FROM nexnark: bid [SIZE 60 M NUTES ADVANCE 1 M NUTE TI ME] AS b2
GROUP bY b2. auction)

/11 Query 6: Average Selling Price by Seller

#QNAVE Nexmar k: Q6

#ADDQUERY

SELECT AV Q final) AS s, Qseller

FROM (

SELECT MAX(B.price) AS final, A seller
FROM nexmar k: aucti on [UNBOUNDED] AS A, nexmark: bid [UNBOUNDED] AS B
WHERE A. i d=B.auction AND B.datetine < A expires AND A expires < ${NOW
GROUP BY A.id, A seller) [SIZE 10 TUPLE PARTITION BY A.seller] AS Q

GROUP BY Q sel ler;

/1] Qery 7: Monitor New Users

#QNAVE Nexmar k: Q7

#ADDQUERY

SELECT p.id, p.name, a.reserve

FROM nexnar k: person [SI ZE 12 HOURS ADVANCE 1 TI ME] AS p, nexnmark:auction [SIZE 12 HOURS ADVANCE 1 TIME] AS a
WHERE p.id = a.seller;

	Select syntax

