
Select syntax
Continuous Query
In summary, a CQL statement is like a SQL one, so the continuous query consists of a select, a from, a where, a goup and a having part.

We use the following example to explain basic details of CQL-Query.

SELECT auction, AVG(price) AS aprice
FROM bid [SIZE 60 MINUTES ADVANCE 1 MINUTE TIME]
WHERE auction > 10
GROUP BY auction
HAVING aprice<100.0

Select

SELECT auction, AVG(price) AS aprice...

From

... FROM bid [SIZE 60 MINUTES ADVANCE 1 MINUTE TIME]...

The most different parts between usual SQL and CQL is the FROM part, because you have the possibility to definie windows. CQL defines them by
squared brackets.

There are 3 different windows you can define: an unbounded window, a time-based window and a tuple-based window.

An is defined by the keyword UNBOUNDED. It sets the end timestamp to infinite. Example:unbounded window

SELECT * FROM bid [UNBOUNDED]

Since an unbounded window does not limit the validity of a stream element (in fact it is not really a window), the declaration of UNBOUNDED is optional.
You get the same result without a window declaration. You can use the UNBOUNDED keyword to highlight that no window is defined.

A is defined by the size of the window as time span and an optional advance parameter. The latter defines after what time span the time-based window
window should move (if no unit is declared, it has the same unit as size). Additional, a partition attribute can be defined. Syntax:

SELECT * FROM <source> [SIZE <size> <unit> TIME]

SELECT * FROM <source> [SIZE <size> <unit> ADVANCE <advance size> TIME]

SELECT * FROM <source> [SIZE <size> <unit> ADVANCE <advance size> <unit> TIME]

SELECT * FROM <source> [SIZE <size> <unit> TIME PARTITION BY bid.auction]

SELECT * FROM <source> [SIZE <size> <unit> ADVANCE <advance size> TIME PARTITION BY <partition attribute>]

SELECT * FROM <source> [SIZE <size> <unit> ADVANCE <advance size> <unit> TIME PARTITION BY <partition
attribute>]

For valid values for <unit> see .TimeWindow

A is defined by the size of the window as number of tuples and an optional advance parameter. The latter defines after how many tuple-based window
tuples the window should move. Additional, a partition attribute can be defined. Syntax:

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/TimeWindow

SELECT * FROM <source> [SIZE <size> TUPLE]

SELECT * FROM <source> [SIZE <size> ADVANCE <advance size> TUPLE]

SELECT * FROM <source> [SIZE <size> TUPLE PARTITION BY bid.auction]

SELECT * FROM <source> [SIZE <size> ADVANCE <advance size> TUPLE PARTITION BY <partition attribute>]

Futher information about windows can be found here

Where

... WHERE auction > 10 ...

Group By and Having

... GROUP BY auction
HAVING aprice<100.0

Stream To

If you want to stream your results into a sink, you first have to create a sink.

STREAM TO writeout SELECT * FROM nexmark:person WHERE...

This example would push all data that is produced by "SELECT * FROM WHERE..." into the sink named writeout, which is a file-writer in nexmark:person
our case (see above).

Examples
Here are some language examples what can be used in the select-part of a CQL-Statement

#PARSER CQL
#TRANSCFG Standard
#DOREWRITE false
#QUERY
DROP STREAM bid IF EXISTS
#QUERY
ATTACH STREAM bid (timestamp STARTTIMESTAMP, auction INTEGER, bidder INTEGER, datetime LONG, price DOUBLE)
CHANNEL localhost : 65442
#QUERY
DROP STREAM person IF EXISTS
#QUERY
ATTACH STREAM person (timestamp STARTTIMESTAMP,id INTEGER,name STRING,email STRING,creditcard STRING,city
STRING,state STRING) CHANNEL localhost : 65440
/// SIMPLE PROJECTS
#QUERY
SELECT * FROM bid
#QUERY
SELECT bid.* FROM bid
#QUERY
SELECT price FROM bid
#QUERY
SELECT bidder, price FROM bid
#QUERY
SELECT timestamp, auction, bidder, datetime, price FROM bid

https://wiki.odysseus.informatik.uni-oldenburg.de/pages/viewpage.action?pageId=4587829
http://nexmarkperson

/// PROJECTS WITH RENAMED SOURCE BUT NO USE IN PROJECT
#QUERY
SELECT * FROM bid AS b
#QUERY
SELECT bid.* FROM bid AS b
#QUERY
SELECT price FROM bid AS b
#QUERY
SELECT bidder, price FROM bid AS b
#QUERY
SELECT timestamp, auction, bidder, datetime, price FROM bid AS b
/// PROJECTS WITH RENAMED SOURCE WITH USE IN PROJECT
#QUERY
SELECT * FROM bid AS b
#QUERY
SELECT b.* FROM bid AS b
#QUERY
SELECT b.price FROM bid AS b
#QUERY
SELECT b.bidder, b.price FROM bid AS b
#QUERY
SELECT b.timestamp, b.auction, b.bidder, b.datetime, b.price FROM bid AS b
/// PROJECTS WITH RENAMED ATTRIBUTES
#QUERY
SELECT price AS p FROM bid
#QUERY
SELECT price AS p, bidder FROM bid
#QUERY
SELECT price AS p, bidder AS b FROM bid
/// PROJECTS WITH RENAMED ATTRIBUTES AND SOURCES
#QUERY
SELECT price AS p FROM bid AS b
#QUERY
SELECT b.price AS p FROM bid AS b
#QUERY
SELECT b.price AS p, b.bidder FROM bid AS b
#QUERY
SELECT b.price AS p, b.bidder AS b FROM bid AS b
/// PROJECTS WITH CONSTANTS, FUNCTIONS AND EXPRESSIONS
#QUERY
SELECT bidder + price AS d FROM bid
#QUERY
SELECT 123.4 * price AS d FROM bid
#QUERY
SELECT 123.4 AS d FROM bid
#QUERY
SELECT 123.4 AS d, price FROM bid
#QUERY
SELECT DolToEur(price) AS d FROM bid
#QUERY
SELECT DolToEur(price) AS d, price FROM bid
#QUERY
SELECT DolToEur(price) * auction AS d FROM bid
#QUERY
SELECT DolToEur(price) * price AS d FROM bid
#QUERY
SELECT DolToEur(price) * auction AS d, price FROM bid
#QUERY
SELECT DolToEur(123.4) AS d FROM bid
#QUERY
SELECT 'test' AS s FROM bid
#QUERY
SELECT 'test' AS s, 123.4 AS d FROM bid
#QUERY
SELECT 'test' AS s, 123.4 AS d, price FROM bid
/// PROJECTS AND SELECTS WITH RENAMED SOURCE WITH USE IN SELECT
#QUERY
SELECT * FROM bid AS b WHERE b.bidder > 10
#QUERY
SELECT b.* FROM bid AS b WHERE b.bidder > 10
#QUERY

SELECT b.price FROM bid AS b WHERE b.price < 150.0
#QUERY
SELECT b.bidder, b.price FROM bid AS b WHERE b.bidder = 1
#QUERY
SELECT b.timestamp, b.auction, b.bidder, b.datetime, b.price FROM bid AS b WHERE b.price > 100.0
/// PROJECTS WITH RENAMED ATTRIBUTES
#QUERY
SELECT price AS p FROM bid WHERE p < 100
#QUERY
SELECT price AS p, bidder FROM bid WHERE p > 100
#QUERY
SELECT price AS p, bidder AS b FROM bid WHERE b=1 AND p <100
/// AGGREGATES ARE NOT HANDLED LIKE FUNCTIONS AND MAY HAVE A GROUPING ETC.
#QUERY
SELECT AVG(price) AS aprice FROM bid
#QUERY
SELECT AVG(price) AS aprice FROM bid GROUP BY auction
#QUERY
SELECT auction, AVG(price) AS aprice FROM bid GROUP BY auction
#QUERY
SELECT auction, AVG(price) AS aprice FROM bid GROUP BY auction HAVING aprice<100.0
/// JOINS AND SELFJOINS
#QUERY
SELECT auction, bidder FROM bid, person WHERE bid.bidder = person.id
#QUERY
SELECT auction FROM bid AS b, person AS p WHERE b.bidder = p.id
#QUERY
SELECT auction AS a, bidder AS b FROM bid, person WHERE a = b
#QUERY
SELECT auction, bidder FROM bid, person WHERE bid.bidder = person.id
#QUERY
SELECT left.* FROM bid AS left, bid AS right WHERE left.bidder = right.bidder
#QUERY
SELECT a.auction AS aid FROM bid AS a, bid AS b WHERE aid=b.auction

And here are examples, based on nexmark, that are more complex

#PARSER CQL
#TRANSCFG Standard
#DROPALLQUERIES
#DROPALLSOURCES
#QUERY
CREATE STREAM nexmark:person (timestamp STARTTIMESTAMP, id INTEGER, name STRING, email STRING, creditcard
STRING, city STRING, state STRING) CHANNEL localhost : 65440
#QUERY
CREATE STREAM nexmark:bid (timestamp STARTTIMESTAMP, auction INTEGER, bidder INTEGER, datetime LONG, price
DOUBLE) CHANNEL localhost : 65442
#QUERY
CREATE STREAM nexmark:auction (timestamp STARTTIMESTAMP, id INTEGER, itemname STRING, description STRING,
initialbid INTEGER, reserve INTEGER, expires LONG, seller INTEGER, category INTEGER) CHANNEL localhost : 65441
#QUERY
CREATE STREAM nexmark:category (id INTEGER, name STRING, description STRING, parentid INTEGER) CHANNEL
localhost : 65443

#PARSER CQL
#TRANSCFG Standard
#DROPALLQUERIES
/// Query 1: Currency Conversion
#QNAME Nexmark:Q1
#ADDQUERY
SELECT auction, DolToEur(price) AS euro, bidder, datetime
FROM nexmark:bid [UNBOUNDED];

///Query 2: Selection
#QNAME Nexmark:Q2
#ADDQUERY
SELECT auction, price
FROM nexmark:bid
WHERE auction=7 OR auction=20 OR auction=21 OR auction=59 OR auction=87;

///Query 3: Local Item Suggestion
#QNAME Nexmark:Q3
#ADDQUERY
SELECT p.name, p.city, p.state, a.id
FROM nexmark:auction [UNBOUNDED] AS a, nexmark:person [UNBOUNDED] AS p
WHERE a.seller=p.id AND (p.state='Oregon' OR p.state='Idaho' OR p.state='California') AND a.category = 10;

///Query 4: Average Price for a Category
#QNAME Nexmark:Q4
#ADDQUERY
SELECT AVG(q.final)
FROM nexmark:category [UNBOUNDED] AS c,
 (SELECT MAX(b.price) AS final, a.category
 FROM nexmark:auction [UNBOUNDED] AS a, nexmark:bid [UNBOUNDED] AS b
 WHERE a.id = b.auction AND b.datetime < a.expires AND a.expires < Now()
 GROUP BY a.id, a.category) AS q
WHERE q.category = c.id
GROUP BY c.id;

///Query 5: Hot Items
#QNAME Nexmark:Q5
#ADDQUERY
SELECT b2.auction
FROM (SELECT b1.auction, COUNT(auction) AS num
 FROM nexmark:bid [SIZE 60 MINUTES ADVANCE 1 MINUTE TIME] AS b1
 GROUP BY b1.auction
) AS b2
WHERE num >= ALL (SELECT count(auction) AS c
 FROM nexmark:bid [SIZE 60 MINUTES ADVANCE 1 MINUTE TIME] AS b2
 GROUP bY b2.auction)

///Query 6: Average Selling Price by Seller
#QNAME Nexmark:Q6
#ADDQUERY
SELECT AVG(Q.final) AS s, Q.seller
FROM (
SELECT MAX(B.price) AS final, A.seller
 FROM nexmark:auction [UNBOUNDED] AS A , nexmark:bid [UNBOUNDED] AS B
 WHERE A.id=B.auction AND B.datetime < A.expires AND A.expires < ${NOW}
 GROUP BY A.id, A.seller) [SIZE 10 TUPLE PARTITION BY A.seller] AS Q
GROUP BY Q.seller;

///Query 7: Monitor New Users
#QNAME Nexmark:Q7
#ADDQUERY
SELECT p.id, p.name, a.reserve
FROM nexmark:person [SIZE 12 HOURS ADVANCE 1 TIME] AS p, nexmark:auction [SIZE 12 HOURS ADVANCE 1 TIME] AS a
WHERE p.id = a.seller;

	Select syntax

