Continuous Query Language (CQL)

Remark (2017.11.30): CQL is no longer part of the default download. If you want to use cql, it must be installed. See How to install new features.
A comfortable way is to use "#REQUIRED de.uniol.inf.is.odysseus.parser.cql2.feature.feature.group” (see Features and Updates)

This document describes the basic concepts of the Continuous Query Language (CQL) of Odysseus and shows how to use the language.
The Continuous Query Language (CQL) is a SQL based declarative query language. This document shows how to formulate queries with CQL.

CQL Grammar
Create syntax
Drop syntax
Select syntax
User Management

Create Streams

The create stream statement is used to tell Odysseus where the data comes from, this normally opens a connection to a source, e.g. a Sensor or server.

The stream always consists of a name (here: "category”) and a schema:

CREATE STREAM category (id INTEGER, nane STRING description STRING parentid | NTEGER)

Then, it is followed by a connection-property that tells how/where the stream can be accessed. Most used are the channel format and the generic access
framework (which we recommend)

Odysseus Channel Format

Odysseus has a built-in byte-based format for transfering data. This is, for example, used by the nexmark example. This is called a "CHANNEL"-
connection and looks like follows:

CREATE STREAM nexnar k: person (tinmestanp STARTTI MESTAMP, i d | NTECER, nane STRI NG enmi |l STRING creditcard STRI NG
city STRING state STRING CHANNEL | ocal host : 65440

Generic Access Framework

However, the recommended and new way is a generic access, which offers different protocols, wrappers etc. as described in Access framework. An
example would be:

CREATE STREAM nexnar k: person (tinestanp STARTTI MESTAMP, id I NTEGER, nane STRING enmil STRING creditcard
STRING city STRING state STRING

WRAPPER ' CGeneri cPush'

PROTOCOL ' Si zeByt eBuf fer'

TRANSPORT ' NonBl ocki ngTcp'

DATAHANDLER ' Tupl e’

OPTIONS ('port' '65440', 'host' 'odysseus.offis.uni-oldenburg.de', 'ByteOrder' 'Little_Endian')

As you may see, there is a direct mapping between the needed parameters. So you can use each Protocol Handler and Data handler and Transport
Handler in a CREATE STREAM statement. Thus, the wrapper must be also existing, which are e.g. GenericPush or GenericPull (see also Access
framework). The Options-parameter is optional and is a comma separated list of key value pairs that are enclosed by quotation marks.

Create Views

You can also create a view, which is a logical view on a result of a continuous query.
CREATE VI EW nexQuery FROM (

SELECT b. aucti on, Dol ToEur(b. price) AS euroPrice, b.bidder, b.datetine FROM nexnark:bi d [UNBOUNDED] AS b
)

This allows you to resuse the query, e.g. as follows:

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/How+to+install+new+features
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Features+and+Updates
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/CQL+Grammar
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Create+syntax
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Drop+syntax
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Select+syntax
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/User+Management
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Access+framework
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Protocol+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Data+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Transport+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Transport+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Access+framework
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Access+framework

SELECT * FROM nexQuery

Create Sinks

Similar to creating sources for incoming data by "create stream”, you can also create sinks for outgoing data. The notation is very similar to "create
stream". Since it is also based on the Access Framework, you can also need different Protocol Handler and Data handler and Transport Handler. For
example, the following creates a sink that writes a CSV file:

CREATE SINK writeout (timestanp STARTTI MESTAMP, auction | NTEGER, bidder |NTEGER, datetine LONG pri ce DOUBLE)
WRAPPER ' Generi cPush’
PROTOCOL ' CSV'
TRANSPORT ' Fil e’
DATAHANDLER ' Tupl e’
OPTIONS ('filenane' 'E:\test')

Drop Streams

You can drop a stream with:

DROP STREAM cat egory

Since this statement would return an error if the stream "category" does not exist, you can add "IF EXISTS" to avoid this error (it checks, if the stream is
existing before running the drop)

DROP STREAM category | F EXI STS

Drop Sinks

You can drop a sink with:

DROP SI NK cat egory

Since this statement would return an error if the stream "category" does not exist, you can add "IF EXISTS" to avoid this error (it checks, if the sink is
existing before running the drop)

DROP SINK category | F EXI STS

Continuous Query

In summary, a CQL statement is like a SQL one, so the continuous query consists of a select, a from, a where, a goup and a having part.
We use the following example to explain basic details of CQL-Query.

ATTENTION: Currently, the * notation is not allowed for aggregation functions. So instead of count(*) use count(attribute). The parser error is not very
helpful in this case: " Caused by: de.uniol.inf.is.odysseus. parser.cql.parser.ParseException: Encountered " "SELECT"
"SELECT "" at line 1, colum 1. WAas expecting: "REVCKE" ..."

SELECT auction, AVGQ price) AS aprice

FROM bid [SIZE 60 M NUTES ADVANCE 1 M NUTE TI ME]
WHERE auction > 10

GROUP BY auction

HAVI NG apri ce<100. 0

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Access+framework
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Protocol+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Data+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Transport+handler
http://de.uniol.inf.is

Select

SELECT auction, AVG@price) AS aprice...

From

FROM bid [SIZE 60 M NUTES ADVANCE 1 M NUTE TI Mg ...

The most different parts between usual SQL and CQL is the FROM part, because you have the possibility to definie windows. CQL defines them by
squared brackets.

The following parameters are available for time based windows (TIME):

® S|ZE: Defines the size of the window, e.g. 60 MINUTES
= ADVANCE: After what time will the window move

The following parameters are available for element based windows (TUPLE)

= S|ZE: Defines the size of the window in elements
= ADVANCE: After how many elements is the window moved

Futher information about windows can be found here.

More about the window syntax can be found at Select syntax.

Where

VWHERE auction > 10 ...

Group By and Having

. GROUP BY auction
HAVI NG apri ce<100. 0

Stream To

If you want to stream your results into a sink, you first have to create a sink.

STREAM TO wri t eout SELECT * FROM nexmar k: per son WHERE. . .

This example would push all data that is produced by "SELECT * FROM nexmark:person WHERE..." into the sink named writeout, which is a file-writer in
our case (see above).

Examples

Here are some language examples what can be used in the select-part of a CQL-Statement

#PARSER CQL

#TRANSCFG St andar d

#DOREWRI TE f al se

#QUERY

DROP STREAM bid | F EXI STS

#QUERY

ATTACH STREAM bid (timestanp STARTTI MESTAMP, auction | NTEGER, bidder |NTECER, datetime LONG price DOUBLE)
CHANNEL | ocal host : 65442

#QUERY

DROP STREAM person | F EXI STS

#QUERY

ATTACH STREAM person (tinestanp STARTTI MESTAMP, i d | NTEGER, nane STRING enmil STRING creditcard STRING city
STRING state STRING CHANNEL | ocal host : 65440

/11 S| MPLE PRQIECTS

https://wiki.odysseus.informatik.uni-oldenburg.de/pages/viewpage.action?pageId=4587829
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Select+syntax
http://nexmarkperson

#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT

* FROM bi d

bid.* FROM bid

price FROM bid

bi dder, price FROM bid

tinmestanp, auction, bidder, datetinme, price FROM bid

/1] PROQIECTS W TH RENAMED SOURCE BUT NO USE | N PRQJECT

#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT

* FROM bid AS b

bid.* FROM bid AS b

price FROM bid AS b

bi dder, price FROM bid AS b

ti nmestanp, auction, bidder, datetinme, price FROMbid AS b

/1] PRQIECTS W TH RENAMED SOURCE W TH USE | N PROJECT

#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT

* FROM bid AS b

b.* FROM bid AS b

b.price FROM bid AS b

b. bi dder, b.price FROM bid AS b

b.timestanp, b.auction, b.bidder, b.datetine, b.price FROMbid AS b

/11 PROJECTS W TH RENAMED ATTRI BUTES

#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT

price AS p FROM bid
price AS p, bidder FROM bid

price AS p, bidder AS b FROM bid

/11 PROJECTS W TH RENAMED ATTRI BUTES AND SOURCES

#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT

price AS p FROMbid AS b
b.price AS p FROM bid AS b
b.price AS p, b.bidder FROMbid AS b

b.price AS p, b.bidder AS b FROM bid AS b

/1] PROJECTS W TH CONSTANTS, FUNCTI ONS AND EXPRESSI ONS

#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT
#QUERY
SELECT

bi dder + price AS d FROM bid

123.4 * price AS d FROM bid

123.4 AS d FROM bid

123.4 AS d, price FROM bid

Dol ToEur (price) AS d FROM bid

Dol ToEur (price) AS d, price FROM bid

Dol ToEur (price) * auction AS d FROM bid

Dol ToEur (price) * price AS d FROM bid

Dol ToEur (price) * auction AS d, price FROM bid
Dol ToEur (123.4) AS d FROM bid

"test' AS s FROM bid

#QUERY

SELECT 'test' AS's, 123.4 AS d FROM bid

#QUERY

SELECT '"test' AS's, 123.4 AS d, price FROM bid

/1] PROIECTS AND SELECTS W TH RENAMED SOURCE W TH USE | N SELECT
#QUERY

SELECT * FROM bid AS b WHERE b. bi dder > 10

#QUERY

SELECT b.* FROM bid AS b WHERE b. bi dder > 10

#QUERY

SELECT b. price FROM bid AS b WHERE b. price < 150.0

#QUERY

SELECT b. bi dder, b.price FROM bid AS b WHERE b. bidder = 1
#QUERY

SELECT b.tinestanp, b.auction, b.bidder, b.datetine, b.price FROMbid AS b WHERE b. price > 100.0
/1l PRQIECTS W TH RENAMED ATTRI BUTES

#QUERY

SELECT price AS p FROM bid WHERE p < 100

#QUERY

SELECT price AS p, bidder FROM bid WHERE p > 100
#QUERY

SELECT price AS p, bidder AS b FROM bi d WHERE b=1 AND p <100

/11 AGGREGATES ARE NOT HANDLED LI KE FUNCTI ONS AND MAY HAVE A GROUPI NG ETC.
#QUERY

SELECT AVQE price) AS aprice FROM bid

#QUERY

SELECT AVE price) AS aprice FROM bid GROUP BY auction

#QUERY

SELECT auction, AVQ price) AS aprice FROM bid GROUP BY auction

#QUERY

SELECT auction, AVGE price) AS aprice FROM bid GROUP BY auction HAVI NG apri ce<100.0
/11 JONS AND SELFJO NS

#QUERY

SELECT auction, bidder FROM bid, person WHERE bi d. bi dder = person.id
#QUERY

SELECT auction FROM bid AS b, person AS p WHERE b. bi dder = p.id
#QUERY

SELECT auction AS a, bidder AS b FROM bid, person WHERE a = b
#QUERY

SELECT auction, bidder FROM bid, person WHERE bi d. bi dder = person.id
#QUERY

SELECT left.* FROM bid AS left, bid AS right WHERE | eft. bidder = right. bidder
#QUERY

SELECT a. auction AS aid FROM bid AS a, bid AS b WHERE ai d=b. aucti on

And here are examples, based on nexmark, that are more complex

#PARSER CQL

#TRANSCFG St andar d

#DROPALLQUERI ES

#DROPALL SOURCES

#QUERY

CREATE STREAM nexnar k: person (tinestanp STARTTI MESTAMP, id I NTEGER, nane STRING enmil STRING creditcard
STRING city STRING state STRING CHANNEL | ocal host : 65440

#QUERY

CREATE STREAM nexnark: bid (tinmestanp STARTTI MESTAMP, auction | NTEGER, bidder | NTEGER, datetine LONG price
DOUBLE) CHANNEL | ocal host : 65442

#QUERY

CREATE STREAM nexnar k: auction (tinestanp STARTTI MESTAMP, id I NTEGER, itemane STRING description STRI NG
initialbid | NTEGER, reserve |NTEGER, expires LONG seller INTEGER, category |NTEGER) CHANNEL | ocal host : 65441
#QUERY

CREATE STREAM nexmar k: category (id | NTEGER, name STRING description STRING parentid | NTEGER) CHANNEL

| ocal host : 65443

#PARSER CQL

#TRANSCFG St andar d

#DROPALLQUERI ES

/1l Query 1: Currency Conversion
#QNAVE Nexmar k: QL

#ADDQUERY

SELECT auction, Dol ToEur(price) AS euro, bidder, datetinme
FROM nexnar k: bi d [UNBOUNDED ;

/1] Qery 2: Selection

#QNAVE Nexmar k: Q2

#ADDQUERY

SELECT auction, price

FROM nexnar k: bi d

WHERE aucti on=7 OR auction=20 OR auction=21 OR auction=59 OR aucti on=87;

/11 Query 3: Local |tem Suggestion

#QNAVE Nexmar k: QB

#ADDQUERY

SELECT p.nane, p.city, p.state, a.id

FROM nexnar k: aucti on [UNBOUNDED] AS a, nexmark: person [UNBOUNDED] AS p

VWHERE a. seller=p.id AND (p.state='Oregon' OR p.state='ldaho' OR p.state="California') AND a.category = 10;

/11 Query 4: Average Price for a Category

#QNAVE Nexmar k: Q4

#ADDQUERY

SELECT AV q.final)

FROM nexnar k: cat egory [UNBOUNDED] AS c,
(SELECT MAX(b.price) AS final, a.category
FROM nexmar k: aucti on [UNBOUNDED] AS a, nexnark:bid [UNBOUNDED] AS b
VWHERE a.id = b.auction AND b.datetinme < a.expires AND a.expires < Now()
GROUP BY a.id, a.category) AS q

WHERE q.category = c.id

GROUP BY c.id;

/1] Qery 5: Hot Itens
#QNAVE Nexmar k: Q6

#ADDQUERY
SELECT b2. aucti on

FROM (SELECT b1l.auction, COUNT(auction) AS num
FROM nexnmark: bi d [SI ZE 60 M NUTES ADVANCE 1 M NUTE TI ME] AS bl
GROUP BY bl.auction
) AS b2
VWHERE num >= ALL (SELECT count (auction) AS c
FROM nexnar k: bi d [SI ZE 60 M NUTES ADVANCE 1 M NUTE TI ME] AS b2
GROUP bY b2. auction)

/11 Query 6: Average Selling Price by Seller

#QNAVE Nexmar k: Q6

#ADDQUERY

SELECT AV Q final) AS's, Qseller

FROM (

SELECT MAX(B.price) AS final, A seller
FROM nexmar k: aucti on [UNBOUNDED] AS A, nexmark:bid [UNBOUNDED] AS B
WHERE A. i d=B.auction AND B.datetine < A expires AND A expires < ${NOW
GROUP BY A.id, A seller) [SIZE 10 TUPLE PARTI TION BY A .seller] AS Q

GROUP BY Q sel ler;

/1] Qery 7: Monitor New Users

#QNAVE Nexmar k: Q7

#ADDQUERY

SELECT p.id, p.nane, a.reserve

FROM nexnar k: person [SI ZE 12 HOURS ADVANCE 1 TI ME] AS p, nexnmark:auction [SIZE 12 HOURS ADVANCE 1 TIME] AS a
VWHERE p.id = a.seller;

	Continuous Query Language (CQL)

