Temporal Feature

The temporal feature integrated temporal attributes into Odysseus. These can be useful to predict unknown or future values of an attribute that develops
over time. The temporal feature brings a complete semantics for temporal processing and is the foundation for spatio-temporal processing in Odysseus.
The temporal feature is closely related to the moving object algebra by Giiting et al. The implementation is a prototype and can be buggy in some places.
This article is meant to give you an overview if you want to use or extend this part of Odysseus.

Temporal Attributes

Temporal attributes are attributes that not only have one value, but one value for each point in time for a certain time interval. In other words, a temporal
attribute of a certain type is a function that for each point in time returns a value of its type. Take a temporal integer over the interval [0,5) as an example. It
could be the function f(t) = 5 * t. Then, it has five values, one for each point in the time interval: 00, 1 5, 2 10, 3 15, 4 20. A temporal integer can be
denoted as tinteger, a temporal boolean as tboolean and so on.

Internally, for Odysseus, a temporal attribute looks just like a non-temporal attribute. For example, a temporal integer looks like an integer for Odysseus.
Nevertheless, the temporal feature tricks Odysseus a little bit at this point. While the type in the schema stays an integer, the actual value is not an integer

but a temporal integer. In the schema, a temporal attribute can be detected in the constraints, which is a key-value field each attribute has. Here, temporal
is set to true.

Prediction Time Interval and Bitemporal Streams

The previously mentioned time interval for which a temporal attribute has the values is the Prediction Time Interval. It is an additional time interval in the
metadata of a stream element next to the normal stream time interval. It needs to be activated in the metadata definition of a query:

metaattribute = ['Tinelnterval', 'PredictionTines'],

As you can see, the metadata is called PredictionTimes. That is because in fact the metadata holds a list of non-overlapping time intervals. That is due to
the algebra behind this approach and is explained later on.

With two time intervals, the stream time (Timelnterval) and the prediction time, we have two temporal dimensions for each stream element. We denote this
as a bitemporal stream.

Lifted Expressions

Lifted expressions are normal expressions with at least one temporal attribute involved.

Theoretical Foundation

Expressions are a core element of queries. They are used in map, select, and join operators. Typically, an expression uses one or more attributes from the
stream element(s). An example could be attri butel + attribute2 > 42. A goal of the temporal feature is that this works with temporal attributes in
the same way it does with non-temporal attributes. This is done with the lifting approach (a term from the moving object algebra). If at least one attribute of
an expression is temporal, the output of the expression will also be temporal. This can be denoted with a second order signature.

Let us consider two functions: distance, in_interior (both are spatial, wherefore you would additionally need to use the spatial feature. Also consider the
spatio-temporal feature.) and +.

point x region boolean [in_interior]
point x point real [distance]

real x real real [+]

The lifting process now creates all combinations wil temporal attributes.
tpoint x region tboolean [in_interior]
point x tregion tboolean [in_interior]
tpoint x tregion tboolean [in_interior]
tpoint x point treal [distance]

point x tpoint treal [distance]

tpoint x tpoint treal [distance]

treal x real treal [+]

real x treal treal [+]

https://link.springer.com/content/pdf/10.1023/A:1009805532638.pdf

treal x treal treal [+]

Handling of Lifted Expressions in Odysseus

The idea behind the temporal feature is that you can use any normal function and the function does not need to know about the temporal feature. This is
achieved by a simple trick: the non-temporal version of the expression is automatically evaluated for each point in time in the prediction time interval. The
temporal attributes are solved for the points in time, create a non-temporal value which is then used to evaluate the function in a non-temporal manner.
Then, the single results are stacked together to create a temporal output attribute. This is what the temporal feature does for you so you don't have to
worry about this when writing your expressions.

The translation rules for the single operators detect if a temporal attribute is used in the expression(s). Then, a Tenpor al Rel at i onal Expr essi on is
created instead if a Rel ati onal Expr essi on. The output of a temporal expression is typically a Gener i cTenpor al Type. Because it is not feasible to
always create a temporal function, a simple map is used that maps from the time to the values. This new temporal attribute can of course be used in other
expressions with any kind of function.

Direct Temporal Functions

The moving object algebra defines some functions that work directly on temporal attributes and therefore do not need this kind of translation described
above. An example would be the SpeedFunct i on from the spatio-temporal feature. It takes a temporal spatial point (tpoint) and creates a tdouble with the
speed of the object at each point in time. A direct temporal function implements the interface Tenpor al Funct i on. If the temporal function does not return
a temporal value itself, but a non-temporal , it also implements the interface RenoveTenpor al Funct i on. An example would be the Tr aj ect or yFunct i
on from the spatio-temporal feature, which gets a tpoint and creates a non-temporal trajectory, i.e., a spatial LineString.

Combining Functions in Mixed Expressions

When mixing direct temporal functions and normal functions (already existing in Odysseus, need non-temporal input values), a M xedTenpor al Expr essi
on is created. As a user you don't have to worry about this and can simply use them as if they were not-mixed expressions. Except - it could be that they
are a little slower. From a functional aspect, they are identical as if a normal Tenpor al Rel at i onal Expr essi on is used. The following example shows a
mixed expression with Tr aj ect or y being a direct temporal function and Spat i al Lengt h a normal non-temporal function:

/1 You can conbine these two ...
calcTraj = MAP({

expressions = [[' Trajectory (tenpSpatial Point , PredictionTimes) ' , ' traj 1],
keepi nput = true
} , predTine)
MAP({
expressions = [[’'Spatial Length(traj)’,’len 1],
keepi nput = true
} , calcTraj)
/1 ... into this mxed expression
calcTraj = MAP({
expressions = [[' SpatialLength (Trajectory (tenpSpatial Point , PredictionTimes)) ' , 'traj ']],

keepi nput = true
} , predTinme)

Operators

As a user, you can use the normal operators as you would without using temporal attributes. Nevertheless, the operators behave a little different. Their
behavior with the temporal feature is explained in the following. Additionally, you need to define the Pr edi ct i onTi ne, which is done with the Predi cti o
nTi me operator. Additionally, you need to create some temporal attributes. We call this process temporalization, which is also explained in the following.

PredictionTime

Before any operation with temporal attributes involved, you should set the prediction time. Similar to the stream time, this is a necessary step to define in
which time interval you are interested. May it be just the current point in time, some time prediod in the future or in the past. Typically, you align the
prediction time at the stream time. This means that you consider the start timestamp as being "now". From there, you can define your start- and
endtimestamp for the prediction time interval. For example, if you want to look from "now" up until 10 seconds into the future, you can do it like this:

/1] Set the prediction tine

predTi me = PREDI CTI ONTI ME({
addtostartvalue = [0, ' SECONDS'],
addt oendval ue = [10, ' SECONDS'],
predi ctionbaseti meunit = ' SECONDS',
al i gnAt End = fal se
b

reconbi ne)

You can also align the prediction time interval at the end timestamp of the stream time. This can be done with al i gnAt End = true.

Temporalization

To work with temporal attributes, you need to have some in your stream. There are multiple ways to create temporal attributes. You can use the existing
aggreagtion functions which "learn" a function from the previous elements. These create linear or spline functions and prdict, i.e. extrapolate or interpolate
unknown points in time.

For example, you can create a temporal double from a stream of double values. "wh" is an attribute with a double value. In this case, there are "wh"
measurements from different sources, which can be grouped by their "id". The eval_at_outdating is not necessary. It reduces the number of output
elements of the aggregation operator and can be handy in some cases, but problematic in others.

/1] Convert the wh-attribute to a tenporal double
tenporal i ze = AGGREGATI ON({
aggregations = [['function' = 'ToTenporal Double', 'input_attributes' = 'wh', 'output_attributes' =
"tenp_wh']],
group_by =1["id'],
eval _at_outdating =
fal se

}otime)

Another possibility is to crate a temporal spatial point with a spline or a linear function:

/1] Temporalize the location attribute
tenporal i ze = AGGREGATI O\({
aggregations = [['function' = 'TOLI NEARTEMPORALPO NT', 'input_attributes' = 'Spatial Point',
‘output_attributes' = 'tenp_SpatialPoint']],
group_by = ["id"],
eval _at _outdating =
fal se

}, createSpatial Object)

Another option is that you already know the future movement or at least some points. An example function which uses this mechanism is the
"FromTemporalGeoJson" map function. It creates a temporal function from the given source. This can be an option, if you know the future values, e.g.,
because your navigation systems provides a route.

/11 A known trajectory
input_traj = ACCESS({
sour ce=' Sour ce',
wr apper =' GenericPul | ',
transport="File',
protocol =" Text',
dat ahandl er =" Tupl e',
metaattribute = ['Tinelnterval', 'PredictionTines'],
opti ons=[
["filenane', '/home/tobi/dev/odysseus_workspace/ phd- wor kspace/ Movi ng Obj ect/Basi c Queries
/ predefinedTraj ectory/tenporal GeoJson.txt'],
["Delimter', ";"]
1.
schena=[[' data',
"String' 1]

i3]

json = MAP({

expressions = [[' FroniTenpor al GeoJson
(data)','tenpTrajectory']]
},input_traj)

The schema of the temporal GeoJson is copied from the Leaflet library, because there is no common standard for temporal GeoJson: https://github.com
/socib/Leaflet. TimeDimension#ltimedimensionlayergeojson Here is an example for a temporal GeoJson file:

{

"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {

"times": [
"1534255083000",
"1534255093000",
"1534255003000",
"1534255103000",
"1534255113000",
"1534255123000",
"1534255133000",
"1534255143000",
"1534255153000",
"1534255163000",
"1534255173000",
"1534255183000",
"1534255193000"

]
o
"geometry": {
"type": "LineString",
"coordinates": [

[
8.188934326171875,
53. 48722843308561

1

[
8.206787109375,
53. 55581022359457

1,

[
8.177947998046875,
53. 63161060657857

1

[
8.136749267578125,
53. 69345406966439

https://github.com/socib/Leaflet.TimeDimension#ltimedimensionlayergeojson
https://github.com/socib/Leaflet.TimeDimension#ltimedimensionlayergeojson

1.
[
8. 24249267578125,
53. 747898723904164
1
[
8. 378448486328125,
53. 78523783809317
1.
[
8. 36334228515625,
53. 820922446131306
1
[
8.260345458984375,
53. 82983885331911
1.
[
8. 1573486328125,
53. 82902834926158
1
[
8. 029632568359375,
53. 82983885331911
1.
[
7.901916503906249,
53. 82335438174398
1
[
7.794799804687499,
53.81038242731128
1.
[
7.745361328125,
53. 782803690625954

Map

You can use the map operator with temporal attributes just as if you would use non-temporal attributes only. You can mix temporal and non-temporal
attributes. Just be careful with the Limitations with direct temporal functions. If you have a temporal attribute involved, the result of the expression will
typially be a temporal attribute. Internally, a Tenpor al Rel at i onal MapPOis created with a Tenpor al Rel at i onal Expr essi on.

Example for map operators with temporal attributes

/1] Energy consunption per household per minute in the next 15 minutes
derivative = MAP({
expressions = [
['derivative(tenp_wh, PredictionTines)','whPerMnute'],
[“id,"id]
]
}, predTine)

/1] Energy consunption per household per minute in the next 15 minutes
watts = MAP({
expressions = [
['whPerM nute * 60", 'watt'],
[*id,"id]
]

},derivative)

Select

The select operator works a little different when a temporal attribute is involved in the predicate (i.e., an expression with Boolean return value). It does not
tell if, but when a stream element fulfills the predictate. It does this by reducing the prediction time interval(s) to the intervals in which the predicate return t
r ue. If the prediction times are empty, i.e., if the predictate is not true at any point in time in the incoming prediction time interval(s), the stream element is
removed completely.

But why are there multiple prediction time intervals, i.e., a list of time intervals, in the metadata of a steam element? That is because the predicate can be
for some intervals true and for some false. The select needs to remove the intervals in which the result is false. Hence, it needs to create multiple non-
intersecting time intervals. An example can be seen in the following figure. If the predicate isi s_i nsi de(t poi nt, regi on), the result are two time
intervals: [[12:00,13:00),[14:00,15:00)].

/N 12:00
/
7 13:00
- e
—_ . - ~
- 15:00 D

Example for a moving object that is in a region twice.

Having a list is a design decision. An alternative would have been, that the select could create multiple stream elements. Nevertheless, a select is
considered to reduce the stream elements, not increasing their number. Hence, this solution was choosen.

The trimTemporal function

If the temporal attribute(s) on which an expression in a select operator is evaluated is a Gener i cTenpor al Type, i.e., a map from points in times to
values, the t ri mTenpor al function is useful. The select operator only changes the PredictionTimes metadata. For example, it limits the metdata from
containins 100 points in time to 1 point in time. In that case, a GenericTemporalType temporal attribute contains 100 values but only needs to hold 1 value.
The t ri mTenpor al function removes all values instead of the ones which are within the metadata. This can reduce the memory consumption and makes
the temporal attributes simpler to read in the output. On an algebraic level, this function changes nothing, as future functions will only use those values
which are valid in the predictionTimes interval, anyway.

test Sel ect = SELECT({
predicate = 'tdi stance > 15000'
}, cal cDi st ance)

testTrim = MAP({

expressions = ['TrinTenporal (tdi stance, PredictionTines)']
}, test Sel ect)

Join

When applying a join operator on two streams with PredictionTimes metadata, the operator intersects the PredictionTimes to create the result element.
The predicate is handled equally as in the select operator.

tenpJoi nTest = JO N({
predicate = 'other_tenp_x + center_tenp_x > 19
}, renaneCent er, renameQ her)

Aggregation

If the aggregation operator is used with a temporal attribute, the TTenpor al Aggr egat i onACRul e makes a few changes, but uses the same operator
implementation:

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Aggregation+operator

® A union merge function for the PredictionTimes is applied. This leads to a result that ignores if some elements that participate in an aggregation
are not valid in the prediction time dimension at some points in time, which is probably what the user wants. An intersection could be useful in
some situations, but is not the default option in the implementation.

® Most aggregation functions are incremental functions. Currently, only those are supported to work with temporal attributes. They are translated to
a Tenpor al | ncr ement al Aggr egat i onFunct i on, which creates a temporal output for the function.

Examples

In the following, a few examples that use the temporal feature are presented.

Energy Consumption

Imagine you have a few smart meters that send you the current total energy value in an interval of 15 minutes. You need to know the consumption in-
between these measurements or you want to know which households are consuming a high amount of energy right now. The following query does that for
you. It takes the energy consumption and converts it into temporal attributes. Then the prediction time is set to the next 15 minutes. The deri vati ve
function can be used to get the wh per minute. Finally, the select operator selects the points in time where the consumption is "high".

#PARSER PQL
#DOREWRI TE f al se

#DEFI NE PATH_LOCAL '/ medi a/ nydat a/ dev/ odysseus_wor kspace/ phd- wor kspace/ Movi ng Obj ect/ Eval uati on/ scenari os/ ener gy
/ energy_data. csv'
#ADDQUERY

i nput = ACCESS({
sour ce=' househol ds'
wr apper =' GenericPul | ',
schenma=[
["id,"Integer'],
["wh',"Integer'],
[' BaseDateTine',' StartTi neStanp']
I
i nputschema=["'Integer', ' Integer','Integer'],
transport="File',
protocol = csv',
dat ahandl er =" Tupl e',

metaattribute = ['Tinelnterval', 'PredictionTines'],
options=[
['filename', ${PATH LOCAL}],

["Delimter',","],

[" TextDelimter',"'""],
['delay','1000'],
['readfirstline' ,'false'],
[' BaseTineUnit',' M NUTES']

)

/11 Only use the last two neasured val ues
time = TI MEW NDOW {

size = [20,
'mnutes']

3
i nput

)

/1] Convert the wh-attribute to a tenporal double
tenporal i ze = AGGREGATI ON({

aggregations = [

['function' = 'ToTenporal Double', "input_attributes' = 'wh', 'output_attributes' =

"tenp_wh']

1

group_by =1['id'],

eval _at _outdating =

fal se

}.
tine

)

predTi me = PREDI CTI ONTI ME({
addtostartvalue = [0, 'M NUTES'],
addt oendval ue = [15,
' M NUTEs' |
o

tenporalize

)

/11 Energy consunption per household per mnute in the next 15 nminutes
derivative = MAP({
expressions = [
["derivative(tenp_wh, PredictionTines)',' whPerMnute'],
[“id,"id]
]
b
predTi ne
)

/11 Energy consunption per household per minute in the next 15 minutes
watts = MAP({
expressions = [
['whPerM nute * 60", 'watt'],
["id,"id]
]
b
derivative

)

/1] Filter out elements with a | ow energy consunption
hi ghConsunption = SELECT({
predicate = '"watt > 300
b

watts

And here's an example file with energy consumption data:

energy_data.csv

2,50, 18
3, 250, 21
1, 200, 30
2,60, 33
3, 500, 36
1, 210, 45
2,100, 48
3, 600, 51

Spatio-Temporal Radius

This is a spatio-temporal query, i.e., you need the spatio-temporal feature. It searches for all ships (moving objects) that are is an radius of 5000 meters to
the ships with the ids 367629990 and 316004106.

#PARSER PQL

#QNAME r adi us_nor mal

#PARSER PQL

#DEFI NE dat a_path '/ hone/ odysseus/ data/ 2017/ Al S_2017_04_01_Zonel0_1000_1200. csVv'
#DEFI NE i nput _del ay_ms O

#DEFI NE resul t _path '/hone/ odysseus/ dat a/ eval / radi us_normal /join

/ radi us_ToLi near Tenpor al Poi nt 30m 2c_1M LLI SECONDS_10pni n_5000m buf f er _1000000_0. csv'
#DEFI NE r adi us 5000

#DEFI NE center_ids toList (367629990, 316004106)

#DEFI NE ti me_ot her _j oi n_wi ndow 1

#DEFI NE uni t _ot her _j oi n_wi ndow ' M LLI SECONDS'

#DEFI NE prediction_m nutes 10

#DEFI NE t enpor al i zati on_wi ndow 30

#DEFI NE t enpor al i zati on_net hod ' ToLi near Tenpor al Poi nt*

#DEFI NE buf f er _si ze 1000000

#RUNQUERY

i nput = ACCESS({
sour ce=' vessel Rout e2' ,
wr apper =' GenericPul |,
schenma=[

["MVBI',"'Long'],

[' BaseDateTine',' StartTineStanp'],

['latitude' Double'],

["longit ude ' Doubl e'],

['SOG, Double]

['COG , Double]

[" Headi ng', "' Double'],

['VesseINama "String'],

["1 ,"String'],

['CallSlgn 'String'],

[' Vessel Type',' String'],

["Status', ‘Strlng'],

["Length', ' Double'],

["Wdth', ' Double'],

["Draft', ' Double'],

["Cargo', ' Integer']

I

i nput schema=|[

‘Long',"'String',' Double',' Double',' Double',' Double',' Double',"String','String','String'

' Doubl €', ' Doubl e', ' I nt eger"’
1.
transport="File',
protocol = csv',
netaattribute = [
'Tinelnterval', 'PredictionTines', 'Datarate',
' Lat ency’
1.
dat ahandl er =" Tupl e',
dateformat = 'yyyy-Mvidd\' T\' HH: nm ss',
options=[
['filename', ${data_path}],
["Delimter',","],
[" TextDelimter',"'""],
['delay', ${i nput_del ay_mns}],
['readfirstline ,'false']
]
}
)

/1l Measure the datarate
rate = DATARATE({
updaterate = 100,
key =
' datarate'

i nput

,'String'

,"String',

' Doubl

/1] We only want to use the elenents fromthe last time
time = TI MEW NDOW {

size = [${tenporalization_w ndow},
'mnutes']

h

rate

)

createSpatial Ovj ect = MAP({
expressions = [

['" ToPoint(latitude, |ongitude, 4326)', 'SpatialPoint'],

['SOG * 0.514444', 'SOGs'],
[*MBI",id],
[' BaseDat eTi ne', ' recordDat eTi ne']
I
keepi nput =
fal se

b
tine

)

/11 Tenporalize the |location attribute
tenporal i ze = AGGREGATI ON({
aggregations = [

[*function' = ${tenporalization_nethod},
‘output_attributes' = 'tenp_Spatial Point'],
['function' = "Trigger']

1.
group_by =1["id"],
eval _at _outdating =

fal se
}
createSpati al Obj ect
)
lat1 = CALCLATENCY(tenporalize
)
mapl at 1 = MAP({
expressions = [['latency', 'latencyl']],
keepi nput = true
}
latl

)

/11 Select the center
sel ect Center = SELECT({

predicate = 'contains(id, ${center_ids})"’
heartbeatrate = 1

b

mapl at 1

)

renanmeCenter = MAP({
expressions = [
["id","id_center'],
['tenp_Spatial Point',' center_tenp_Spati
["latency','center_latencyl']

h

sel ect Cent er

)

al | Cbj ects = TI MEW NDOW({
size = [60,
'mnutes']

"input_attributes’

al Point'],

= 'Spatial Point',

mapl at 1

updat eOnCent er = TI MEW NDOW({
size = [

${ti me_ot her_j oi n_wi ndow},

${ uni t _ot her _j oi n_wi ndow}

]
b

renameCent er

reconbi ne = JO N({

predicate = 'id !=id_center',
el enent si zeport0 = 1,
el enentsi zeportl = 1,

group_by_port_0O0 = ["id_center'],
group_by_port_1 =

1,
updat eOnCent er,
al | bj ects

| at 2 = CALCLATENCY(r econbi ne
)

mapl at 2 = MAP({
expressions = [

["min(latencyl, center_latencyl)', 'latency_mnl'],

["latency', 'latency2']
1.
keepi nput = true
}
| at2
)

#1 F tol nteger(buffer_size) >0
buf = BUFFER({
THREADED = true,
maxbuf fersi ze = ${buffer_size}
I
nmapl at 2
)

/1] Set the prediction tine

predTi me = PREDI CTI ONTI ME({
addtostartvalue = [0, 'M NUTES'],
addt oendval ue = [${prediction_m nutes},
predictionbasetineunit =

' M NUTES

H
buf
)
#ELSE
/1] Set the prediction tine
predTi me = PREDI CTI ONTI ME({
addtostartvalue = [0, 'M NUTES'],
addt oendval ue = [${prediction_m nutes},
predicti onbasetineunit =
' M NUTES'

"M NUTES'],

M NUTES'],

mapl at 2

#ENDI F

/1] Calcul ate exact distance for refine step
cal cDi stance = MAP({
expressions = [
['Orthodronmi cDi stance(center_tenp_Spatial Point, tenp_Spatial Point)',"'tdistance']
1.
keepi nput =
true

H
predTi ne

)

/1l Refine step
di stanceSel ect = SELECT({

predicate = 'tdistance <
${radi us}'

b

cal cDi stance

)

I at 3 = CALCLATENCY(di st anceSel ect
)

/1l Get datarate into data
getDatarate = MAP({
expressions = [

["id_center', "id_center'],
[“id, "id],
["latency_minl', 'latencyl'],
["latency2', 'latency2'],
["latency', 'latency3'],

["last(first(Measurenents))', ' datarate']
1,
keepi nput =
fal se

b,
lat3

)

/1l Store the results

out put = SENDER({
si nk='Si nk',
wr apper =' Generi cPush',
transport="File',
protocol = CSV' ,
dat ahandl er =" Tupl e',

options=[
["delimter' ', '],
["textDelimter',"" "],

["csv.witeheading',true],
[*filenanme', ${result_path}],
["createdir', true]

b
get Dat arat e

)

If you want to try this query, you can do it with this data from the marine cadastre. It is a little preprocessed:

https://marinecadastre.gov/ais/

AIS_ 2017 ... 1200.csv

	Temporal Feature

