
Development with Odysseus
NEW (29.01.2024): We will change some dependency handling! For development with eclipse you must install the into the Eclipse m2e PDE Integration
IDE.

Help - Install New Software…
Use the m2e Update Site: https://download.eclipse.org/technology/m2e/releases/latest/
Select m2e PDE Integration
Finish the installation

After the installation it can be used in the .PDE Target Editor

06.02.2024: Due to a bug in Eclipse, you will need to use the latest eclipse version (2024-03): https://www.eclipse.org/downloads/packages
/release/2024-03/

Nearly everything in Odysseus is designed to be replaced or extended. Here are the typical ones:

Language extensions
Create a new language (not only for queries, could be a DSL for anything)
Create a new Odysseus Script Commands (#....)
Create a new Logical/PQL Operator

Processing function extensions
Create new datatypes
Create new stream object types

Data Handler
Create a new wrapper

Transport handler
Protocol handler

Create new functions for expressions and predicates
Create new aggregation functions
Create new operators

Create new schedulers and scheduling strategies
Create new meta data

Some OSGi/Eclipse basics
OSGi Life Cycle
OSGi debugging

Setting up
1. Prerequisites
2. Checkout Source Code

Option 1: Extending Odysseus with New Plugins
ODT

Option 2: Extending an Existing Odysseus Plugin/Extending Odysseus Core
Remark: There could be some updates in odysseus_dev that is not already reflected in each module. So it is always a good idea to
update the odysseus_dev submodule to the newest version.
3. Setup Eclipse
4. Target Platform
5. First Run - Available Products
6. Additional Information

Features
Logging

Some OSGi/Eclipse basics
Bundles

Aka plugin: An eclipse project
Each bundle has its own class loader
MANIFEST.MF: meta data for that bundle (name, version, imports, exports…)
In Odysseus: a module that encapsulates functions

Fragment
A special bundle that will not exist allone but together with a host bundle
Same class loader as host bundle
Used to extend host bundle
We do not use this anymore, better approach is declarative services

Declarative Services
OSGi way of dependency injection
Defined by so called components
Can provide functions by interfaces or use (bind/unbind) implementations by interfaces à examples later

Feature: a feature is a collection of bundles
Define a set of bundles, that belong together and builds some functionality (e.g. each wrapper has its own feature)

https://download.eclipse.org/technology/m2e/releases/latest/
https://www.eclipse.org/downloads/packages/release/2024-03/m2
https://www.eclipse.org/downloads/packages/release/2024-03/m2

An update site provides features
A bundle can be part of many features

Update-site:
A collection of features that can be installed in Odysseus
On the same way, as in Eclipse („Install new software“)
Via command on ther server
Via Odysseus-Script

Product:
A product is a runnable software (with an application)
Can be defined by bundles or features
We only use features to define products

OSGi Life Cycle

Each bundle has a life cycle
Installed: A bundle (with correct Metadata is installed)
Resolved: All dependencies (MANIFEST) are found
Uninstalled: removed from runtime
Active: a bundle is activated

E.g. call of bundle activator
Remark: there is no need to start a bundle, if the bundle should only provide classes (as a library)

Eclipse tries to resolve dependencies lazy, if this cannot be done, the bundle stays installed --> bundle cannot be used

OSGi debugging

TODO: Check commands with apache felix console

When an application (product) gets started with –console (as in Odysseus always), there is a console available
ss shows all currently available bundles and their current life cycle state
Sometimes, there are problems because dependencies are missing (INSTALLED)
Typical problem: The dependency defined in the MANIFEST.MF was not added to any feature
diag <id> shows the missing dependencies
Again: Resolved is no “problem” ;-)

ls: shows all currently installed (declarative) services
Unsatisfied: Some dependencies cannot be found
Use comp <id> to determine missing dependencies

Setting up
This section describes how to set up Eclipse and Odysseus for development.

New:

See also our about this. video
See also some slides
See a more compact example here

1. Prerequisites

You will need the following tools:

https://odysseus.informatik.uni-oldenburg.de/download/documentation/videos/development/OdysseusDevelopmentInit.mp4
https://wiki.odysseus.informatik.uni-oldenburg.de/download/attachments/1572890/Odysseus_Tutorial.pdf?version=1&modificationDate=1571144650000&api=v2
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Odysseus+Development+Startup

Java 17 OpenJDK
Eclipse () for RCP and RAP Developers Important! Do not use a standard eclipse version!
GIT client (you can use git from command line or with a tool of your choice)

2. Checkout Source Code

Remark: Under windows it is best to use a folder, that is not inside the user home path (because of long file names). A good option would be a base folder
git somewhere on the root level.

There are different ways to create new functionality with Odysseus. The first way should be used if you want to add something new to Odysseus (e.g. a
new wrapper) but do not want to change the common code base. This should be the preferred way of development with Odysseus:

Option 1: Extending Odysseus with New Plugins

Odysseus has a very large code base. To allow a lightweight start, we provide a template project in our Bitbucket server. You should clone or fork this
project and use it to add new plugins to this template. The template can be found here: https://git.swl.informatik.uni-oldenburg.de/projects/ODY/repos

 . When using git you should use the following command to clone Odysseus. The template contains some standard /odysseusrepotemplate/browse
products and the target platform as a submodule. The "--recurse-submodules" flag clones this submodule when cloning the repository. Alternatively, you
can clone the submodule individually.

git clone --recurse-submodules https://git.swl.informatik.uni-oldenburg.de/scm/ody/odysseusrepotemplate.git
newRepo
cd newRepo
cd odysseus_dev
git checkout master

Remark: because you are not allowed to push updates to the template repository you should change your repository URL to your git location and rename
your folder to your new repository name.

// in your newRepo Folder!
git remote set-url origin <new url>

ODT

There is also a first approach for an eclipse plugin that could make processing easier. For this, install the Odysseus Development Tools from the following
update site

https://odysseus.informatik.uni-oldenburg.de/download/odt/

and uncheck "Group items by category".

After installation and restart there is a new menu option Odysseus where you can create an initial project:

https://git.swl.informatik.uni-oldenburg.de/projects/ODY/repos/odysseusrepotemplate/browse
https://git.swl.informatik.uni-oldenburg.de/projects/ODY/repos/odysseusrepotemplate/browse

Option 2: Extending an Existing Odysseus Plugin/Extending Odysseus Core

You want to extend an existing plugin from Odysseus or extend the core system? Then, instead of cloning the empty template from Option 1, clone the
repository of the plugin you want to develop on. If the plugin is hosted in our Bitbucket, you can probably find it in one of the projects in this list: https://git.

 . Look for example at the Odysseus, the Odysseus Incubation and Odysseus Wrapper projects. When you have swl.informatik.uni-oldenburg.de/projects
found the repository you want to use, check it out and don't forget to clone the submodule to get the target platform definition and the standard products:

git clone --recurse-submodules <your repo URL>
cd <repo>
cd odysseus_dev
git checkout master

Remark: There could be some updates in odysseus_dev that is not already reflected in each
module. So it is a good idea to update the odysseus_dev submodule to the newest always
version.

If you missed the --recurse-submodules, you can also use:

git clone <your repo URL>
cd <repo>
git submodule init
git submodule update
cd odysseus_dev
git checkout master
cd ..

3. Setup Eclipse

After Eclipse started, you have to import all bundles (these are the parts of Odysseus and are equal to an Eclipse project). Use "File -> Import -> Existing
Projects into Workspace" to import them into Eclipse as follows:

https://git.swl.informatik.uni-oldenburg.de/projects
https://git.swl.informatik.uni-oldenburg.de/projects

After clicking "Next", select all needed projects.

Now there are many project already opened:

Most of them are from odysseus_dev.

The source code folder has the following subfolders:

client: contains all bundles that run on the client and don't have any dependencies to the server directly. It mainly offers the GUI.
common: this holds common stuff and utilities that are needed on both server and client. Common does not have any dependencies to other
folders like server, client...
monolithic: this folder contains bundles that will only work in a monolithic system where server and client are the same product
resource: possibly some resources for the bundle, but probably empty. The resources are part of the target platform and are downloaded
automatically by Eclipse when settings the target platform.
server: this is the server part of Odysseus and contains Odysseus main functionalities. Except of common, it does not have any dependencies to
other folders. It does not have any GUI or client functionalities.
test: contains stuff for testing and benchmarking

4. Target Platform

You now see a lot of compiler error. This is because the target platform is not set.

The target platform can be found in the project .targetplatform

Choose the correct for you work.Targetplatform

Remark: It works best, when you first open the file (double click) and .wait some time (until the platform is resolved)

Click "Set as Active Target Platform" to use this as your target platform. Important: Do not click, if "Resolving..." is still active!

After that, the project will be compiled and there should not be any errors anymore.

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/PLATFORMTARGETFILE

If there are still errors, you should try to update the odysseus_dev folder (sometimes there are errors with the sites, that dliver target platform contents)

5. First Run - Available Products

Now you should be able to run Odysseus. There are some predefined product-definitions to run Odysseus. Depending on the bundles/folders you checked
out before they can differ, but the standard submodule should contain three products:

Odysseus Server - (located in de.uniol.inf.is.odysseus.server.product) - This is just a server-based instance of Odysseus (without any GUI) which
can be used e.g. via a .REST
Odysseus Studio 2 (Client) - (located in de.uniol.inf.is.odysseus.client.product) - This is only the client part (GUI), which tries to connect to an
Odysseus Server instance via webservice.
Odysseus Studio 2 - (located in .odysseus.monolithic.product) - This combines server and client into a single product and adds de.uniol.inf.is
some additional bundles that only work in such a monolithic combination.

For your first run, the easiest way is to start the "Odysseus Studio 2" (.odysseus.studio.product.monolithic). Open this file and go to the tab de.uniol.inf.is
"Overview". (you can alternatively run Click "Synchronize" under "Testing" and afterwards click "Launch an Eclipse application" to run Odysseus
it in debug mode if you want). When Odysseus Studio (the GUI) comes up, you have to insert some credentials. A default user is "System" and the
password is "manager", the tenant can be left empty. Now Odysseus should be up and running.

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/REST+interface+V2
http://de.uniol.inf.is
http://de.uniol.inf.is

6. Additional Information

Features

Since Odysseus is an OSGi based application, it is divided into several bundles (the bunch of projects you checked out and imported before). To keep the
overview of all bundles, they are combined to features. Each feature reflects a special functionality of Odysseus. Thus, we have a core.feature that
encapsulates all minimal needed bundles or the studio.feature that contains all bundles for the RCP (i.e., GUI) of Odysseus (what we call Odysseus
Studio). The combination of several features is called a "product" - which should be runnable. The section above, for example, lists three products that
combine different sets of features.

The core feature is necessary because it contains all fundamental functions for Odysseus. Here's a list of Odysseus Features: See Features. Adding
 how to add a new Feature to an existing product.features to products

Logging

Odysseus comes with the Simple Logging Facade for Java (). To use logging, add the bundle. In this SLF4J de.uniol.inf.is.odysseus.slf4j
bundle you can find the log4j2.xml to configure the logging behavior (or use one of the given).

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Features
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Adding+features+to+products
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Adding+features+to+products
http://www.slf4j.org/

	Development with Odysseus

