
Implement Recovery Techniques
This page is for Odysseus developers and shows how to add new recovery techniques to Odysseus.

A recovery technique is in Odysseus a composition of smaller recovery components. Processing Image and BaDaSt are for example two different recovery
components. The rollback recovery is a composition of both.

To implement a new recovery component, you have to implement the interface IRecoveryComponent:

IRecoveryComponent

/**
 * A recovery component handles the backup and recovery of certain information
 * (e.g., installed queries).
 *
 * @author Michael Brand
 *
 */
public interface IRecoveryComponent {

 /**
 * Initializes the component with a given configuration.
 *
 * @param config
 * the configuration for the component.
 */
 public void initialize(Properties config);

 /**
 * Runs the recovery mechanism for given queries.
 *
 * @param qbConfig
 * The used query build configuration.
 * @param session
 * The session of the user, who wants to back up the data.
 * @param queries
 * The queries.
 * @param caller
 * The executor that called this method.
 * @return {@code queries} either modified for recovery or not. Depends on
 * the used recovery strategy.
 */
 public List<ILogicalQuery> activateRecovery(QueryBuildConfiguration qbConfig, ISession session,
 List<ILogicalQuery> queries, IExecutor caller);

 /**
 * Activates the backup mechanism for given queries.
 *
 * @param qbConfig
 * The used query build configuration.
 * @param session
 * The session of the user, who wants to back up the data.
 * @param queries
 * The queries.
 * @param caller
 * The executor that called this method.
 * @return {@code queries} either modified for recovery or not. Depends on
 * the used recovery strategy.
 */
 public List<ILogicalQuery> activateBackup(QueryBuildConfiguration qbConfig, ISession session,
 List<ILogicalQuery> queries, IExecutor caller);

}

To compose a new recovery technique, you have to implement the interface IRecoveryExecutor:

IRecoveryExecutor

/**
 * A recovery executor represents a complete non-distributed recovery (NDR)
 * strategy by calling certain {@link IRecoveryComponent}s in a certain order.
 *
 * @author Michael Brand
 *
 */
public interface IRecoveryExecutor {

 /**
 * Gets the name of the executor.
 *
 * @return A string unique for recovery executors.
 */
 public String getName();

 /**
 * Creates a new recovery executor with a given configuration.
 *
 * @param config
 * the configuration for the executor. Typically, it is the
 * totality of configurations for the
 * {@link IRecoveryComponent}s.
 * @return A new recovery executor instance.
 */
 public IRecoveryExecutor newInstance(Properties config);

 /**
 * Runs the NDR mechanism for given queries.
 *
 * @param qbConfig
 * The used query build configuration.
 * @param session
 * The session of the user, who wants to recover the data.
 * @param queries
 * The queries to recover.
 * @param caller
 * The executor that called this method.
 * @return {@code queries} either modified for recovery or not. Depends on
 * the used recovery strategy.
 */
 public List<ILogicalQuery> activateRecovery(QueryBuildConfiguration qbConfig, ISession session,
 List<ILogicalQuery> queries, IExecutor caller);

 /**
 * Activates the backup mechanism for given queries.
 *
 * @param qbConfig
 * The used query build configuration.
 * @param session
 * The session of the user, who wants to back up the data.
 * @param queries
 * The queries to backup.
 * @param caller
 * The executor that called this method.
 * @return {@code queries} either modified for backup or not. Depends on the
 * used recovery strategy.
 */
 public List<ILogicalQuery> activateBackup(QueryBuildConfiguration qbConfig, ISession session,
 List<ILogicalQuery> queries, IExecutor caller);

 /**
 * Checks, if a recovery is needed.
 *
 * @return True, if
 * {@link #activateRecovery(QueryBuildConfiguration, ISession, List)}
 * should be called.
 */
 public boolean isRecoveryNeeded();

}

But typically the abstract class AbstractRecoveryExecutor can be used as super class.

After implementing a new recovery executor, it must be declared as an OSGi declarative service that provides an implementation of IRecoveryExecutor.

If you want to use the checkpointing component to get a notification when a checkpoint is reached, you have to register like in the following example:

Usage of Checkpointing

RollbackRecoveryExecutor instance = new RollbackRecoveryExecutor();
List<IRecoveryComponent> components = new ArrayList<>();
components.add(new CheckpointingRecoveryComponent());
components.add(new ProcessingImageRecoveryComponent());
components.add(new BaDaStRecoveryComponent());
components.add(new DuplicatesDetectorRecoveryComponent());
instance.init(config, components);
((CheckpointingRecoveryComponent) instance.components.get(0))
 .addCheckpointManagerListener((ProcessingImageRecoveryComponent) instance.components.get(1));
return instance;

	Implement Recovery Techniques

