
1.
2.

Scheduling
When you have only one query with one source, scheduling is not a thing to think about, in other cases some options can be done by configuring the
scheduler.

Scheduling in Odysseus has two parts:

Choose the query to schedule. This is done by the scheduler
Scheduler the plan of the query. This is done with the scheduling strategy

In a file called scheduling.conf defines the basic scheduling mechanisms:ODYSSEUS_HOME

defaultScheduler=<SCHEDULER>

defaultStrat=<SCHEDULING STRATEGY>

The scheduling can be changed via ().Odysseus Script Other Commands

#SCHEDULER "Single Thread Scheduler RR" "Round Robin"

Remark: This will not update scheduling.conf file.

Schedulers:

ST Scheduler RR MS Limit Thread: This scheduler schedules different sources in multiple thread. Each source has the same priority. You can
configure () how many sources should be scheduled by one thread. If more sources need Scheduler.Simplethreaded.SourcesPerThread
to be scheduled a new thread is spawned.
Single Thread Scheduler RR Multi Source: This scheduler schedules different sources in multiple thread. Here you can define how many
threads should be used to schedule all sources (), independed of the number of sourcesScheduler.Simplethreaded.SourceThreadCount
Single Thread Scheduler RR: This scheduler schedules each sources in a different thread. No further configuration is necessary.

Remark: The configuration is done in . It is also possible to use (#ODYSSEUS_PARAM see).Odysseus.conf Odysseus Script Other Commands

In the following example the "ST Scheduler RR MS Limit Thread" scheduler is used with the "Round Robin" scheduling strategy. The following parameter
states, that there should be one source per thread, i.e. each source in a query gets its own thread and will run independently.

#SCHEDULER "ST Scheduler RR MS Limit Thread" "Round Robin"
#ODYSSEUS_PARAM Scheduler.Simplethreaded.SourcesPerThread 1

The following configurations can be done in the :Odysseus.conf

scheduler_simpleThreadScheduler_executorThreadsCount: How many theads should be used in parallel. If set to -1 (or not set) the number of
processor cores is used. Save value = 1
Scheduler.Simplethreaded.SourceThreadCount: How many threads should be used for all sources, independed of the number of sources
Scheduler.Simplethreaded.SourcesPerThread (for ST Scheduler RR MS Limit Thread): How many sources should be access by one thread, if
there are more sources, then a new scheduler is used

Other, non core schedulers could provide further parameters.

There are some features, that provide further schedulers

Simple Dynamic Priority Scheduler: TBD
Static Priority Plan Scheduler: TBD
SLA Scheduler: TBD

Scheduling Strategy

By the scheduling strategy, the query is separated into parts, that could be scheduled independently. Only if a query contains at least one , Buffer operator
the scheduling strategy is relevant. In other cases, this strategy does not make any difference.

Remark: If there are no multiple threads, then the processing is done from a source until a sink. If an operator has more than one outputs, the order is from
left to the right, but always until a sink. So if one output port is connected to a query part that has a large number of following operators (or an operator that
has a high latency) this will block the execution of the other output port until each part after the port is exeucuted. You could add s after Buffer operator
each output to allow parallel execution of each output line.

List of currently available Scheduling Strategies (Availablity depends on contained bundles):

Aurora Min Latency: This strategy tries to process each element as fast as possible.
Aurora Min Cost: This strategy tries to process each element with lowest costs.

See for deeper information about Aurora based schedulingshttp://cs.brown.edu/research/aurora/vldb03_scheduler.pdf

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/ODYSSEUS_HOME
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Odysseus+Script
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Other+Commands
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Odysseus.conf
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Odysseus+Script
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Other+Commands
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Odysseus.conf
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Buffer+operator
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Buffer+operator
http://cs.brown.edu/research/aurora/vldb03_scheduler.pdf

Chain: The strategy tries to clear waiting queues as fast as possible, i.e. process a path in the query, that will consume fewer memory.
Chain (Iter): The same, but implemented in another way.

See for deeper information about Chain Schedulinghttp://i.stanford.edu/~dilys/papers/vldb132.pdf

Biggest Queue: Simple strategy that always schedules the queue with the largest numbers of inputs. Remark: This strategy has no notion of
fairness or starvation, i.e. some queues could never be processed with this strategy.
Round Robin: In this strategy, all buffers are scheduled round robin.
Round Robin (Iter): Same as above, but other implementation

You could also bypass all scheduling strategies, even with buffers, when using a threaded buffer (see) and let the virtual machine/operating Buffer operator
system do the thread handling. In many cases this is faster than using a strategy.

http://i.stanford.edu/~dilys/papers/vldb132.pdf
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Buffer+operator

	Scheduling

