
Continuous Query Language (CQL)
Remark (2017.11.30): CQL is no longer part of the default download. If you want to use cql, it must be installed. See . How to install new features
A comfortable way is to use "#REQUIRED de.uniol.inf.is.odysseus.parser.cql2.feature.feature.group" (see)Features and Updates

This document describes the basic concepts of the Continuous Query Language (CQL) of Odysseus and shows how to use the language.

The Continuous Query Language (CQL) is a SQL based declarative query language. This document shows how to formulate queries with CQL.

CQL Grammar
Create syntax
Drop syntax
Select syntax
User Management

Create Streams
The create stream statement is used to tell Odysseus where the data comes from, this normally opens a connection to a source, e.g. a sensor or server.

The stream always consists of a name (here: "category") and a schema:

CREATE STREAM category (id INTEGER, name STRING, description STRING, parentid INTEGER)

Then, it is followed by a connection-property that tells how/where the stream can be accessed. Most used are the channel format and the generic access
framework (which we recommend)

Odysseus Channel Format

Odysseus has a built-in byte-based format for transfering data. This is, for example, used by the nexmark example. This is called a "CHANNEL"-
connection and looks like follows:

CREATE STREAM nexmark:person (timestamp STARTTIMESTAMP,id INTEGER,name STRING,email STRING,creditcard STRING,
city STRING,state STRING) CHANNEL localhost : 65440

Generic Access Framework

However, the recommended and new way is a generic access, which offers different protocols, wrappers etc. as described in . An Access framework
example would be:

CREATE STREAM nexmark:person (timestamp STARTTIMESTAMP, id INTEGER, name STRING, email STRING, creditcard
STRING, city STRING, state STRING)
 WRAPPER 'GenericPush'
 PROTOCOL 'SizeByteBuffer'
 TRANSPORT 'NonBlockingTcp'
 DATAHANDLER 'Tuple'
 OPTIONS ('port' '65440', 'host' 'odysseus.offis.uni-oldenburg.de', 'ByteOrder' 'Little_Endian')

As you may see, there is a direct mapping between the needed parameters. So you can use each and and Protocol Handler Data handler Transport
 in a CREATE STREAM statement. Thus, the wrapper must be also existing, which are e.g. GenericPush or GenericPull (see also Handler Access

). The Options-parameter is optional and is a comma separated list of key value pairs that are enclosed by quotation marks.framework

Create Views
You can also create a view, which is a logical view on a result of a continuous query.

CREATE VIEW nexQuery FROM (
 SELECT b.auction, DolToEur(b.price) AS euroPrice, b.bidder, b.datetime FROM nexmark:bid [UNBOUNDED] AS b
)

This allows you to resuse the query, e.g. as follows:

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/How+to+install+new+features
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Features+and+Updates
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/CQL+Grammar
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Create+syntax
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Drop+syntax
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Select+syntax
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/User+Management
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Access+framework
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Protocol+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Data+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Transport+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Transport+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Access+framework
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Access+framework

SELECT * FROM nexQuery

Create Sinks
Similar to creating sources for incoming data by "create stream", you can also create sinks for outgoing data. The notation is very similar to "create
stream". Since it is also based on the , you can also need different and and . For Access Framework Protocol Handler Data handler Transport Handler
example, the following creates a sink that writes a CSV file:

CREATE SINK writeout (timestamp STARTTIMESTAMP, auction INTEGER, bidder INTEGER, datetime LONG, price DOUBLE)
 WRAPPER 'GenericPush'
 PROTOCOL 'CSV'
 TRANSPORT 'File'
 DATAHANDLER 'Tuple'
 OPTIONS ('filename' 'E:\test')

Drop Streams
You can drop a stream with:

DROP STREAM category

Since this statement would return an error if the stream "category" does not exist, you can add "IF EXISTS" to avoid this error (it checks, if the stream is
existing before running the drop)

DROP STREAM category IF EXISTS

Drop Sinks
You can drop a sink with:

DROP SINK category

Since this statement would return an error if the stream "category" does not exist, you can add "IF EXISTS" to avoid this error (it checks, if the sink is
existing before running the drop)

DROP SINK category IF EXISTS

Continuous Query
In summary, a CQL statement is like a SQL one, so the continuous query consists of a select, a from, a where, a goup and a having part.

We use the following example to explain basic details of CQL-Query.

ATTENTION: Currently, the * notation is not allowed for aggregation functions. So instead of count(*) use count(attribute). The parser error is not very
helpful in this case: "Caused by: .odysseus.parser.cql.parser.ParseException: Encountered " "SELECT" de.uniol.inf.is
"SELECT "" at line 1, column 1. Was expecting: "REVOKE" ..."

SELECT auction, AVG(price) AS aprice
FROM bid [SIZE 60 MINUTES ADVANCE 1 MINUTE TIME]
WHERE auction > 10
GROUP BY auction
HAVING aprice<100.0

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Access+framework
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Protocol+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Data+handler
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Transport+handler
http://de.uniol.inf.is

Select

SELECT auction, AVG(price) AS aprice...

From

... FROM bid [SIZE 60 MINUTES ADVANCE 1 MINUTE TIME]...

The most different parts between usual SQL and CQL is the FROM part, because you have the possibility to definie windows. CQL defines them by
squared brackets.

The following parameters are available for time based windows (TIME):

SIZE: Defines the size of the window, e.g. 60 MINUTES
ADVANCE: After what time will the window move

The following parameters are available for element based windows (TUPLE)

SIZE: Defines the size of the window in elements
ADVANCE: After how many elements is the window moved

Futher information about windows can be found .here

More about the window syntax can be found at .Select syntax

Where

... WHERE auction > 10 ...

Group By and Having

... GROUP BY auction
HAVING aprice<100.0

Stream To

If you want to stream your results into a sink, you first have to create a sink.

STREAM TO writeout SELECT * FROM nexmark:person WHERE...

This example would push all data that is produced by "SELECT * FROM WHERE..." into the sink named writeout, which is a file-writer in nexmark:person
our case (see above).

Examples
Here are some language examples what can be used in the select-part of a CQL-Statement

#PARSER CQL
#TRANSCFG Standard
#DOREWRITE false
#QUERY
DROP STREAM bid IF EXISTS
#QUERY
ATTACH STREAM bid (timestamp STARTTIMESTAMP, auction INTEGER, bidder INTEGER, datetime LONG, price DOUBLE)
CHANNEL localhost : 65442
#QUERY
DROP STREAM person IF EXISTS
#QUERY
ATTACH STREAM person (timestamp STARTTIMESTAMP,id INTEGER,name STRING,email STRING,creditcard STRING,city
STRING,state STRING) CHANNEL localhost : 65440
/// SIMPLE PROJECTS

https://wiki.odysseus.informatik.uni-oldenburg.de/pages/viewpage.action?pageId=4587829
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Select+syntax
http://nexmarkperson

#QUERY
SELECT * FROM bid
#QUERY
SELECT bid.* FROM bid
#QUERY
SELECT price FROM bid
#QUERY
SELECT bidder, price FROM bid
#QUERY
SELECT timestamp, auction, bidder, datetime, price FROM bid
/// PROJECTS WITH RENAMED SOURCE BUT NO USE IN PROJECT
#QUERY
SELECT * FROM bid AS b
#QUERY
SELECT bid.* FROM bid AS b
#QUERY
SELECT price FROM bid AS b
#QUERY
SELECT bidder, price FROM bid AS b
#QUERY
SELECT timestamp, auction, bidder, datetime, price FROM bid AS b
/// PROJECTS WITH RENAMED SOURCE WITH USE IN PROJECT
#QUERY
SELECT * FROM bid AS b
#QUERY
SELECT b.* FROM bid AS b
#QUERY
SELECT b.price FROM bid AS b
#QUERY
SELECT b.bidder, b.price FROM bid AS b
#QUERY
SELECT b.timestamp, b.auction, b.bidder, b.datetime, b.price FROM bid AS b
/// PROJECTS WITH RENAMED ATTRIBUTES
#QUERY
SELECT price AS p FROM bid
#QUERY
SELECT price AS p, bidder FROM bid
#QUERY
SELECT price AS p, bidder AS b FROM bid
/// PROJECTS WITH RENAMED ATTRIBUTES AND SOURCES
#QUERY
SELECT price AS p FROM bid AS b
#QUERY
SELECT b.price AS p FROM bid AS b
#QUERY
SELECT b.price AS p, b.bidder FROM bid AS b
#QUERY
SELECT b.price AS p, b.bidder AS b FROM bid AS b
/// PROJECTS WITH CONSTANTS, FUNCTIONS AND EXPRESSIONS
#QUERY
SELECT bidder + price AS d FROM bid
#QUERY
SELECT 123.4 * price AS d FROM bid
#QUERY
SELECT 123.4 AS d FROM bid
#QUERY
SELECT 123.4 AS d, price FROM bid
#QUERY
SELECT DolToEur(price) AS d FROM bid
#QUERY
SELECT DolToEur(price) AS d, price FROM bid
#QUERY
SELECT DolToEur(price) * auction AS d FROM bid
#QUERY
SELECT DolToEur(price) * price AS d FROM bid
#QUERY
SELECT DolToEur(price) * auction AS d, price FROM bid
#QUERY
SELECT DolToEur(123.4) AS d FROM bid
#QUERY
SELECT 'test' AS s FROM bid

#QUERY
SELECT 'test' AS s, 123.4 AS d FROM bid
#QUERY
SELECT 'test' AS s, 123.4 AS d, price FROM bid
/// PROJECTS AND SELECTS WITH RENAMED SOURCE WITH USE IN SELECT
#QUERY
SELECT * FROM bid AS b WHERE b.bidder > 10
#QUERY
SELECT b.* FROM bid AS b WHERE b.bidder > 10
#QUERY
SELECT b.price FROM bid AS b WHERE b.price < 150.0
#QUERY
SELECT b.bidder, b.price FROM bid AS b WHERE b.bidder = 1
#QUERY
SELECT b.timestamp, b.auction, b.bidder, b.datetime, b.price FROM bid AS b WHERE b.price > 100.0
/// PROJECTS WITH RENAMED ATTRIBUTES
#QUERY
SELECT price AS p FROM bid WHERE p < 100
#QUERY
SELECT price AS p, bidder FROM bid WHERE p > 100
#QUERY
SELECT price AS p, bidder AS b FROM bid WHERE b=1 AND p <100
/// AGGREGATES ARE NOT HANDLED LIKE FUNCTIONS AND MAY HAVE A GROUPING ETC.
#QUERY
SELECT AVG(price) AS aprice FROM bid
#QUERY
SELECT AVG(price) AS aprice FROM bid GROUP BY auction
#QUERY
SELECT auction, AVG(price) AS aprice FROM bid GROUP BY auction
#QUERY
SELECT auction, AVG(price) AS aprice FROM bid GROUP BY auction HAVING aprice<100.0
/// JOINS AND SELFJOINS
#QUERY
SELECT auction, bidder FROM bid, person WHERE bid.bidder = person.id
#QUERY
SELECT auction FROM bid AS b, person AS p WHERE b.bidder = p.id
#QUERY
SELECT auction AS a, bidder AS b FROM bid, person WHERE a = b
#QUERY
SELECT auction, bidder FROM bid, person WHERE bid.bidder = person.id
#QUERY
SELECT left.* FROM bid AS left, bid AS right WHERE left.bidder = right.bidder
#QUERY
SELECT a.auction AS aid FROM bid AS a, bid AS b WHERE aid=b.auction

And here are examples, based on nexmark, that are more complex

#PARSER CQL
#TRANSCFG Standard
#DROPALLQUERIES
#DROPALLSOURCES
#QUERY
CREATE STREAM nexmark:person (timestamp STARTTIMESTAMP, id INTEGER, name STRING, email STRING, creditcard
STRING, city STRING, state STRING) CHANNEL localhost : 65440
#QUERY
CREATE STREAM nexmark:bid (timestamp STARTTIMESTAMP, auction INTEGER, bidder INTEGER, datetime LONG, price
DOUBLE) CHANNEL localhost : 65442
#QUERY
CREATE STREAM nexmark:auction (timestamp STARTTIMESTAMP, id INTEGER, itemname STRING, description STRING,
initialbid INTEGER, reserve INTEGER, expires LONG, seller INTEGER, category INTEGER) CHANNEL localhost : 65441
#QUERY
CREATE STREAM nexmark:category (id INTEGER, name STRING, description STRING, parentid INTEGER) CHANNEL
localhost : 65443

#PARSER CQL
#TRANSCFG Standard
#DROPALLQUERIES
/// Query 1: Currency Conversion
#QNAME Nexmark:Q1
#ADDQUERY

SELECT auction, DolToEur(price) AS euro, bidder, datetime
FROM nexmark:bid [UNBOUNDED];

///Query 2: Selection
#QNAME Nexmark:Q2
#ADDQUERY
SELECT auction, price
FROM nexmark:bid
WHERE auction=7 OR auction=20 OR auction=21 OR auction=59 OR auction=87;

///Query 3: Local Item Suggestion
#QNAME Nexmark:Q3
#ADDQUERY
SELECT p.name, p.city, p.state, a.id
FROM nexmark:auction [UNBOUNDED] AS a, nexmark:person [UNBOUNDED] AS p
WHERE a.seller=p.id AND (p.state='Oregon' OR p.state='Idaho' OR p.state='California') AND a.category = 10;

///Query 4: Average Price for a Category
#QNAME Nexmark:Q4
#ADDQUERY
SELECT AVG(q.final)
FROM nexmark:category [UNBOUNDED] AS c,
 (SELECT MAX(b.price) AS final, a.category
 FROM nexmark:auction [UNBOUNDED] AS a, nexmark:bid [UNBOUNDED] AS b
 WHERE a.id = b.auction AND b.datetime < a.expires AND a.expires < Now()
 GROUP BY a.id, a.category) AS q
WHERE q.category = c.id
GROUP BY c.id;

///Query 5: Hot Items
#QNAME Nexmark:Q5
#ADDQUERY
SELECT b2.auction
FROM (SELECT b1.auction, COUNT(auction) AS num
 FROM nexmark:bid [SIZE 60 MINUTES ADVANCE 1 MINUTE TIME] AS b1
 GROUP BY b1.auction
) AS b2
WHERE num >= ALL (SELECT count(auction) AS c
 FROM nexmark:bid [SIZE 60 MINUTES ADVANCE 1 MINUTE TIME] AS b2
 GROUP bY b2.auction)

///Query 6: Average Selling Price by Seller
#QNAME Nexmark:Q6
#ADDQUERY
SELECT AVG(Q.final) AS s, Q.seller
FROM (
SELECT MAX(B.price) AS final, A.seller
 FROM nexmark:auction [UNBOUNDED] AS A , nexmark:bid [UNBOUNDED] AS B
 WHERE A.id=B.auction AND B.datetime < A.expires AND A.expires < ${NOW}
 GROUP BY A.id, A.seller) [SIZE 10 TUPLE PARTITION BY A.seller] AS Q
GROUP BY Q.seller;

///Query 7: Monitor New Users
#QNAME Nexmark:Q7
#ADDQUERY
SELECT p.id, p.name, a.reserve
FROM nexmark:person [SIZE 12 HOURS ADVANCE 1 TIME] AS p, nexmark:auction [SIZE 12 HOURS ADVANCE 1 TIME] AS a
WHERE p.id = a.seller;

	Continuous Query Language (CQL)

