
Aggregation operator

Parameter
Aggregation Functions
Examples

First
Last
Changing the way this operator outputs values

Further information

The operator is an alternative implementation of . In particular for sliding time windows with advance of 1 aggregation Aggregate (and Group) operator
this operator is faster than the implementation with partial aggregates.

Differences in the use of this operator compared to :Aggregate (and Group) operator

This operator has a more flexible PQL interface that allows to specify key value parameters.
This operator does not set end timestamps of the resulting data stream elements. If you need the validity of the aggregation value you need to
append an element window of size 1.
This operator outputs "empty aggregations" if no tuple is valid at a specific point in time. E.g., the sum aggregation function would output 0. This is
necessary to determine the end timestamp with a subsequent element window.

These aggregation functions are still in development. Especially the keys for the parameters are preliminary and subject to change.

Parameter
group_by: An optional list of attributes over which the grouping should occur.
aggregations: A list of aggregate functions (see below).

 Boolean flag set to true if the handling of other than Time Interval (e.g. Latency) should SUPPRESS_FULL_META_DATA_HANDLING: meta data
be supressed.

The following optional boolean parameters control when a new aggregation value is transferred (see below for useful examples):

: Outputs an updated aggregation value when a new element gets valid. In the case that more than one element gets eval_at_new_element
valid at the same time (same start timestamp), this operator outputs for each element an output value in the order of arrival. The default value is t

.rue
: Outputs an updated aggregation value when one ore more elements gets invalid with the value after the removal of the eval_at_outdating

invalid elements. The default value is .true
: Outputs an updated aggregation value before removing the invalid elements instead of after removal. The eval_before_remove_outdating

default value is .false
: Outputs the value at the time the operator gets the done signal. The default value is .eval_at_done false

: Suppresses elements that are equal to the previous outputted element. The default value is . If you want to use output_only_changes false
this, make sure the equals-method for every attribute type is implemented.

Aggregation Functions

Function
Name

Description Parameters Examples

Count Outputs the number of steam
elements. Name Description Default

Value
Optional?

OUTPUT_ATTRIBU
TES

The name for the output
attribute.

count True

['FUNCTION' = 'Count']

['FUNCTION' = 'Count',
'OUTPUT_ATTRIBUTES' =
'number_of_elements']

Sum Outputs the sum of elements.
Name Description Default

Value
Optional?

INPUT_A
TTRIBUT
ES

The single string or a list of the name(s)
of the attribute(s) in the input tuples. By
default, all input attributes are used. This
could raise an error if attributes are not
numeric.

(all
attributes)

True

OUTPUT
_ATTRIB
UTES

A single string or list of output attributes.
By default, the string "Sum_"
concatenated with the original input
attribute name is used.

"Sum_" +
intput
attribute
name

True

['FUNCTION' = 'Sum']

['FUNCTION' = 'Sum',
'INPUT_ATTRIBUTES' =
'value1']

['FUNCTION' = 'Sum',
'INPUT_ATTRIBUTES' =
['value1', 'value2']]

Avg Average value (mean) TODO (similar to Sum)

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Aggregate+%28and+Group%29+operator
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Aggregate+%28and+Group%29+operator

Min Min value TODO (similar to Sum)

Max Max value TODO (similar to Sum)

First The first element of a window. See
example below. Name Description Default

Value
Optional?

OUTPUT_ATTRIBU
TES

The name for the output
attribute.

first True

You should use the following
settings:

output_only_changes = true

This results in getting the first
element in each window.
Especially useful with a
tumbling window.

Last The last element of a window. See
example below. Name Description Default

Value
Optional?

OUTPUT_ATTRIBU
TES

The name for the output
attribute.

last True

You should use the following
settings:

EVAL_AT_NEW_ELEMENT =
false
EVAL_BEFORE_REMOVE_OU
TDATING = true

This results in getting the last
element in each window.
Especially useful with a
tumbling window.

Trigger The tuple that triggers the output. TODO

Variance Calculates the variance TODO (similar to Sum)

TopK Calculates the top-K list TODO

Nest Nests the valid elements as list. If
given more than one attribute, this will
contain the tuple projected on the
attributes

INPUT_ATTRIBUTES, required ['FUNCTION' =
'Nest','INPUT_ATTRIBUTES
' = 'id']

['FUNCTION' =
'Nest','INPUT_ATTRIBUTES
' = ['id','name']]

Examples

counted = AGGREGATION({AGGREGATIONS = [['FUNCTION' = 'Count']], GROUP_BY = ['publisher', 'item']}, windowed)

You can use more than one aggregation function:

counted = AGGREGATION({AGGREGATIONS = [['FUNCTION' = 'Count'], ['FUNCTION' = 'Sum', 'INPUT_ATTRIBUTES' =
'value1']], GROUP_BY = ['publisher', 'item']}, windowed)

/// count the number of items for each publisher
counted = AGGREGATION({AGGREGATIONS = [['FUNCTION' = 'Count']], GROUP_BY = ['publisher', 'item']}, windowed)
/// aggregate the 100 most frequent items for each publisher to an ordered list
TopKItemsByPublisher ::= AGGREGATION({AGGREGATIONS = [
 [
 'FUNCTION' = 'TopK',
 'TOP_K' = '100', /// number of items
 'SCORING_ATTRIBUTES' = 'Count', /// the attribute name that defines the order
 'INPUT_ATTRIBUTES' = 'item', /// do not use the whole input tuple, just use the
'item' attribute for creating the output top-k set
 'MIN_SCORE' = '0', /// remove items that reaches a score of 0 (due to the
previous aggregation these are all items that has no valid tuple)
 'UNIQUE_ATTR'='item', /// use 'item' as a unique attribute. that means, a new
tuple with an known items id replaces the previous value. (this is some kind of element window in this operator)
 'descending' = true, /// default is true. If you want to
have the smallest elements, use 'false', if you want to have the biggest elements, use 'true'
 'ALWAYS_OUTPUT' = true /// If set to false (default),
'null' is put out instead of the result if the result is equal to the previous result.
]], GROUP_BY = ['publisher']}, counted)

First

Here, we use a tumbling window with the "First" aggregate function to only get the first element per 5-minute window.

/// Tumnbling window
tumbling = TIMEWINDOW({
 size = [5, 'MINUTES'],
 advance = [5,
'MINUTES']
 },
 selectCenter
)

/// Select first of tumbling
reduce = AGGREGATION({
 aggregations = [['FUNCTION' = 'First']],
 output_only_changes = true,
 group_by = ['movingObjectId']
 },
 tumbling
)

/// Remove the grouping id (because it will be in the unnested tuple)
withoutId = PROJECT({
 attributes = ['first']
 },
 reduce
)

/// Unnest the tuple
output = UNNEST({
 attribute='first'
 },
 withoutId
)

Last

Here, we use a tumbling window and the "Last" aggregate function to only get the last element per 5-minute window.

/// Tumnbling window
tumbling = TIMEWINDOW({
 size = [5, 'MINUTES'],
 advance = [5,
'MINUTES']
 },
 selectCenter
)

/// Select last of tumbling
reduce = AGGREGATION({
 aggregations = [['FUNCTION' = 'Last']],
 group_by = ['movingObjectId']
 },
 tumbling
)

/// Remove the grouping id (because it will be in the unnested tuple)
withoutId = PROJECT({
 attributes = ['last']
 },
 reduce
)

/// Unnest the tuple
output = UNNEST({
 attribute='last'
 },
 withoutId
)

Changing the way this operator outputs values

By using the default values, this operator act as (with the limitations explained above). Useful alternative settings are:Aggregate (and Group) operator

Set to and to and add a preceding window with advance.eval_at_new_element false eval_before_remove_outdating true

Remark: In this case, the starttimestamp of the output gets the timestamp of the value, that triggers the output (i.e. the element that states, that the current
elements are outdated).

The following example calculates the number of elements in the stream impressions in one minute. It outputs the total number at the end of each minute
instead of each update when a new item arrives.

windowed = TIMEWINDOW({size = [1, 'Minutes'], ADVANCE = [1, 'MINUTES']}, impressions)
impressions_per_minute = AGGREGATION({AGGREGATIONS = [['FUNCTION' = 'Count']], EVAL_AT_NEW_ELEMENT = false,
EVAL_BEFORE_REMOVE_OUTDATING = true}, windowed)

Further information
How to create aggregation functions (in german)

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Aggregate+%28and+Group%29+operator
https://wiki.odysseus.informatik.uni-oldenburg.de/download/attachments/13566653/HowToCreateAggregationFunctions_German.pdf?version=1&modificationDate=1623131370000&api=v2

	Aggregation operator

