
Structure
The structure of an Odysseus Script may contain different things: commands, comments, variables, constants, macros or control flows.

Commands

Commands are normally those statements that are send to Odysseus, e.g. to install a query or to configure a setting. Each command in Odysseus Script
begins with a hash/number sign (#) followed by its name and by some parameters (if the command needs some parameters).

#COMMAND parameter1 parameter2

Normally, one command is executed for its own and has no impact to other commands. However, the command needs current settings like the #QUERY
parser, which is set by the command .#PARSER

#PARSER PQL
...

Remark: It is important to define the right parser as Odysseus cannot determine the parser based on the query text!

Comments

Comments mark lines that should be ignored by the parser. Useful for additional information for the reader. Comments are defined by using three slashes
per line. Currently, there is no way to comment multiple lines at once.

///this is ignored by the parser

Variables

Variables can be used to reuse certain values. In most cases, they are moved to the top of a file so that they become more visible. A variable can be
created by using and be removed by using . If a variable should be calculated from other variables (or constants), can be used. #DEFINE #UNDEF #EVAL
To access a variable, the user has to write . The existence of a variable (if it is created or not) can be checked with . The value of a ${....} #IFDEF
variable can be printed by using (into the console). The following example shows three variables: an integer called "currentid" that has the value #PRINT
"50", a variable named "path", which has the value "F:/odysseus/example/" and a calculated variable "maxid".

#DEFINE currentid 50
#DEFINE path F:/odysseus/example/
#EVAL maxid = currentid + 100
#RUNQUERY
SELECT * FROM example WHERE id >= ${currentid} AND id <= ${maxid}
#RUNQUERY
CREATE STREAM source (id Double, data STRING)
 WRAPPER 'GenericPush'
 PROTOCOL 'CSV'
 TRANSPORT 'File'
 DATAHANDLER 'Tuple'
 OPTIONS ('filename' '${path}input.csv')

The first and third variables "currentid" and "maxid" are used in the first query, so that it is equal to "SELECT * FROM example WHERE id >= 50 AND id
<= 150". The second variable is used in the second query as a prefix for the filename. Note that variables are simply replaced by its values.

Constants

Constants are special varibales that exists without defining them explicitly. For example, a default variable is NOW so that ${NOW} can be used to get the
current time in milliseconds. This is might be useful if the time of the script execution is needed (e.g. for filenames). The following table shows an excerpt
of currently available constants. Developers can add application-specific constants, if needed (see).Additional constant variables

Symbol Value

NOW Current timestamp

WORKSPACE* The absolute path to the workspace

PROJECT* The project name

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Additional+constant+variables

PROJECTPATH* The absolute path to the project

BUNDLE-ROOT same as PROJECPATH but can additionally be used in and tests Autostart

WORKSPACEPROJECT* The absolute path to the workspace extended by the project name

ROOT* The absolute path to the current file

OS.ARCH The operating system architecture

OS.VERSION The operating system version

OS.NAME The operating system name

CPU The amount of available processors

MEM The total amount of memory

VM.NAME The name of the Java VM

VM.VENDOR The vendor of the Java VM

VM.VERSION The version of the Java VM

*Only available in Odysseus Studio

Additionally, system properties / environment variables provided by System.getProperty(...) and are also available. To avoid System.getenv(...)
naming collisions, each system property has "_" as prefix. Example: ${ } will be replaced with the current system user name (NOT the _user.name
username in Odysseus).

Control Flows

Control flows are statements that are used to define which commands are executed, which not and how often they are executed. There are simple control
flows like a for-loop () or a if-then-else (). They are explained in more details below.#LOOP #IFDEF

Procedures and Macros

Procedures and macros gives the user a possibility to reuse a certain snippet of the code. They can be distinguished between parameterizable procedures
and simply reusable macros. Another advantage: Procedures () are stored in the data dictionary so that their availablity is (according to the #PROCEDURE
user's rights) system wide.

https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/The+Odysseus+Operator+Test+Framework
https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Autostart

	Structure

