
Control Parallelismn
Required Feature: Parallelization

You are able to use Odysseus Script to parallelize an created script automatically. To use this functionality Odysseus Script provides three keywords and a
UI for benchmarking.

#PARALLELIZATION keyword
#INTEROPERATOR keyword

Definition of Endpoints for parallelization
Strategies and supported fragmentation types

#INTRAOPERATOR keyword
Parallelization Benchmarker

#PARALLELIZATION keyword

This keyword tells Odysseus, that the given query needs to be parallelized. There are two parameters that are mandatory and one optional parameter.

Parallelization-Type: (mandatory) Inter-Operator or Intra-Operator. If Inter-Operator type is selected, the given query plan is modified. If Intra-
Operator type is selected, different physical operators are used, that provides multithreading.

Additional Parameters if type is inter-operator:

Parallelization degree: (mandatory) Defines the degree of parallelization that should be used. It is also possible to use the constant AUTO, to
detect the available cores and use this value.
Buffer-size: Defines the number of elements inside of the used buffers. There is also the possibility to use the constant AUTO, to use an default
value.
Optimization: (optional) With this parameter it is possible to enable or disable post optimization. Post optimization is done if two or more
transformations are processed and it is possible to combine these transformations. Removes unneeded union and fragmentations. The
optimization is only possible if fragment-operators have the same number of fragments and if the attributes are equal (only hashfragment). In
addition to this it is not possible that there are stateful operators like unions or operators with stateful functions between both transformations. It is
also not possible that there are splits of the datastream between both of them. These function is enabled by default. If you want to disable it, pass
false as argument for this parameter.

Additional Parameters if type is intra-operator

Parallelization degree: (mandatory) Defines the degree of parallelization that should be used. It is also possible to use the constant AUTO, to
detect the available cores and use this value.
Buffer-size: Defines the number of elements inside of the parallel operators. There is also the possibility to use the constant AUTO, to use an
default value.

The following example shows the usage of this keyword. This example uses the inter-operator parallelization with an degree of 4 and an automatic
buffersize.

#PARSER PQL
#PARALLELIZATION INTER_OPERATOR 4 AUTO true
/// other possible definition of parameters for this keyword
#PARALLELIZATION (type=INTER_OPERATOR) (degree=4) (buffersize=AUTO) (optimization=true)
#RUNQUERY
windowBid = TIMEWINDOW({SIZE = [1, 'MINUTES'],
 advance = [1, 'SECONDS']
 }, bid)

windowAuction = TIMEWINDOW({SIZE = [10, 'MINUTES'],
 advance = [1, 'SECONDS']
 }, auction)

join = JOIN({PREDICATE = 'bid.bidder == auction.id'}, windowBid, windowAuction)

#INTEROPERATOR keyword

If this keyword is used, every operator of the query, which has an compatible parallelization strategy is transformed. If only one or subset of
operators should parallelized, the following keyword need to be used in addition.

The #INTEROPERATOR keyword is an addition to the #PARALLELIZATION keyword for inter-operator parallelization. With this keyword it is possible to
select one or more operators, which should be parallelized. There is also the possibility to configure the parallelization for each operator. This keyword
provides following parameters:

 one or more operatorIds for operators the need to be parallelized. If more than one id is defined the ids need to be Operator-Ids (mandatory):
separated by commas (avoid blanks between ids and commas).
Parallelization degree: (mandatory) Defines the degree of parallelization that should be used. It is also possible to use the constant AUTO to
detect the available cores and use this value, or GLOBAL to use the value defined in the #PARALLELIZATION keyword.
Buffer-size: (mandatory) Defines the number of elements inside of the used buffers. There is also the possibility to use the constant AUTO to use
an default value, or GLOBAL to use the value defined in the #PARALLELIZATION keyword.
Parallelization strategy (optional): the parallelization strategy that should be used for the given operatorIds. Otherwise the preferred strategy is
automatically detected.
Fragmentation type (optional): the fragmentation type that should be used inside of the strategy. Otherwise the preferred type is automatically
selected.
Use parallel Operators (optional): if this option is selected, parallel operators are used instead of normal sequential operators. If the given
operator does not support parallel execution, this option is ignored. Default value is false.

The following code example shows the usage of this keyword. Only the aggregation is parallelized, because only this id is defined. The global
parallelization degree is overwritten with the value of 2. With the constant GLOBAL the value for the buffersize is used from the global definition. In addition
to this parameters, also the parallelization strategy is defined manually. In this case the AggregateMultithreadedTransformationStrategy is used. Note that
the strategy need to be fit to the operator type defined with the id. In addition the strategy need to be compatible for the operator. In some cases it is not
possible to use the selected strategy, e.g. an grouping inside the aggregation is needed. See the list below, for more informations. The last parameter in
this example is the optional selection of an fragmentation type. Note that not every strategy supports all fragmentation types. See the list below for all
possible combinations.

#PARSER PQL
#PARALLELIZATION (type=INTER_OPERATOR) (degree=4) (buffersize=AUTO) (optimization=true)
#INTEROPERATOR aggregateId 2 GLOBAL NonGroupedAggregateTransformationStrategy ShuffleFragmentAO
/// other possible definition of parameters for this keyword
#INTEROPERATOR (id=aggregateId) (degree=2) (buffersize=GLOBAL)
(strategy=NonGroupedAggregateTransformationStrategy) (fragment=ShuffleFragmentAO) (useParallelOp=true)
#RUNQUERY

windowBid = TIMEWINDOW({SIZE = [1, 'MINUTES'],
 advance = [1, 'SECONDS']
 }, bid)

windowAuction = TIMEWINDOW({SIZE = [10, 'MINUTES'],
 advance = [1, 'SECONDS']
 }, auction)

join = JOIN({ID = 'joinId', PREDICATE = 'bid.bidder == auction.id'}, windowBid, windowAuction)

sum_price_bidder = AGGREGATE({ID = 'aggregateId',
 aggregations = [
 ['SUM', 'price', 'sum_price_bidder']
]
 },
 join
)

Definition of Endpoints for parallelization

If the #INTEROPERATOR-keyword is used, it is also possible to define a start and enpoint for parallelization. The definition of the start and end point of
parallelization is possible with a tuple or triple inside of the id-parameter. The following example shows how to use this feature.

#PARSER PQL
#PARALLELIZATION (type=INTER_OPERATOR) (degree=4) (buffersize=AUTO) (optimization=true)
#INTEROPERATOR (id=(aggregateId:selectId)) (degree=4) (buffersize=GLOBAL)
(strategy=GroupedAggregateTransformationStrategy) (fragment=HashFragmentAO)
/// assoure no semantic changes
#INTEROPERATOR (id=(aggregateId:selectId:true)) (degree=4) (buffersize=GLOBAL)
(strategy=GroupedAggregateTransformationStrategy) (fragment=HashFragmentAO)
#RUNQUERY

windowBid = TIMEWINDOW({SIZE = [1, 'MINUTES'],
 advance = [1, 'SECONDS']
 }, bid)

sum_price_bidder = AGGREGATE({ID = 'aggregateId',
 aggregations = [
 ['SUM', 'price', 'sum_price_bidder']
],
 GROUP_BY = ['bidder'],
 FASTGROUPING =
true
 },
 windowBid
)

selectBidder = SELECT({ID = 'selectId',PREDICATE = 'bid.bidder > 1'}, sum_price_bidder)

In this example the aggregate operator is parallelized, but it is also needed that the following selection is also parallelized. So to do this at first the id of the
aggregation is set, after that, seperated with a double quote, the second id of the selection is definied as the endpoint of parallelization. There is the
possibility, that the parallelization changes the semantic of the query. If you want to avoid this append :true to the pair of start and end id. By default this
option is set to false. If it is enabled, a possible semantic change results in an exception.

Strategies and supported fragmentation types

Logical
operator

Parallelization
strategies

Description Supported
fragmentation
types

Allows
definition
of
endpoint

JoinAO JoinTransformatio
nStrategy

Uses an Hash-Fragmentation for both input streams. The fragmentation attributes are gathered
from the join attributes. Note that only equals-predicates (which are concatenated with &&) are
supported. The fragmented datastream is merged with an UNION Operator.

HashFragmentAO

AggregateAO Non AggrGrouped
egateTransformati
onStrategy

Uses an RoundRobin or Shuffle Fragmentation for splitting the input datastream. This strategy
works with partial aggregates and merges the datastream both with an union operator and an
additional aggregate operator for merging the partial aggregates. This strategy works with and
without grouping. Only aggregations with one input attribute are supported.

RoundRobinFrag
mentAO

ShuffleFragmentAO

GroupedAggregat
eTransformationSt
rategy

Uses a Hash-Fragmentation for the input stream. The fragmentation attributes are gathered from
the grouping attributes. So this strategy only works if the aggregate operator has an grouping. Th
e fragmented datastream is merged with an UNION Operator.

HashFragmentAO

#INTRAOPERATOR keyword

The #INTRAOPERATOR keyword is an addition to the #PARALLELIZATION keyword for intra-operator parallelization. With this keyword it is possible to
select one or more operators, which should be parallelized. There is also the possibility to configure the parallelization for each operator. This keyword
provides following parameter

Operator-Ids (mandatory): one or more operatorIds for operators the need to be parallelized. If more than one id is defined the ids need to be
separated by commas (avoid blanks between ids and commas).
Parallelization degree: (mandatory) Defines the degree of parallelization that should be used. It is also possible to use the constant AUTO to
detect the available cores and use this value.

Bold fragmentation types shows the preferred type if nothing is defined.

Buffer-size: (mandatory) Defines the number of elements inside of the used buffers. There is also the possibility to use the constant AUTO to use
an default value.

If this keyword is used, in transformations a parallel physical operator is used. Note that this is only possible if the operator supports such a parallel
physical operator. The following code, shows the usage of this keyword:

#PARSER PQL
#PARALLELIZATION (degree=8) (buffersize=10000) (type=INTRA_OPERATOR)
#INTRAOPERATOR (buffersize=10000) (id=joinId) (degree=8)
#RUNQUERY
windowBid = TIMEWINDOW({SIZE = [1, 'MINUTES'],
 advance = [1, 'SECONDS']
 }, bid)

windowAuction = TIMEWINDOW({SIZE = [10, 'MINUTES'],
 advance = [1, 'SECONDS']
 }, auction)

join = JOIN({id='joinId',PREDICATE = 'bid.auction == auction.id'}, windowBid, windowAuction)

Parallelization Benchmarker

The parallelization component in Odysseus provides a UI, which allows the comparison of different parallelization configurations. To start this component,
click on the bar icon in the top menu bar in Odysseus (please select the query (editor) which you want to parallelize before). The benchmarker starts
initializing the existing query. You do not need to remove parallelization keywords before (these are ignored in benchmarker).

Note

It is possible to use both inter and intra operator parallelization at the same time. The following example shows how this works:

#PARSER PQL
#PARALLELIZATION (degree=8) (buffersize=10000) (type=INTRA_OPERATOR)
#INTRAOPERATOR (buffersize=10000) (id=aggregateId) (degree=8)

#PARALLELIZATION (type=INTER_OPERATOR) (degree=4) (buffersize=AUTO) (optimization=true)
#INTEROPERATOR (id=(joinId:selectId)) (degree=2) (buffersize=10000000)
(strategy=JoinTransformationStrategy) (fragment=HashFragmentAO)
#RUNQUERY
....

If you want to use inter and intra operator parallelization both for the same operator use the option useParallelOp=true

#PARSER PQL
#PARALLELIZATION (type=INTER_OPERATOR) (degree=4) (buffersize=AUTO) (optimization=true)
#INTEROPERATOR (id=aggregateId) (degree=2) (buffersize=GLOBAL)
(strategy=NonGroupedAggregateTransformationStrategy) (fragment=ShuffleFragmentAO) (useParallelOp=true)
#RUNQUERY

After Initialization is done, you need to configure the benchmarker. Note that multiple degrees or the selection of many strategies leads to many executions
and a longer time for doing the analysis. The analysis counts a given umber of elements and gets the execution time of this. The configuration is splitted in
three parts:

Global configuration:

number of elements to count
maximum time for each analysis (to avoid endless running)
number of executions for every configuration (this is the number each configuration is executed every time)

Inter-Operator parallelization

the degrees which should be tested (comma seperated)
the buffersize to use in buffers
select if you want to use threaded buffers or buffers which are controlled via sheduler
select if you want to allow post optimization
select if you want to use parallel operators (if the exists)
select strategies and fragmentations you want to test (it is also possible to select the end operator id and custom degrees)

Intra-Operator parallelization

the degrees which should be tested (comma seperated)
insert operator ids if you want to test only a subset of operators (comma seperated)
the buffersize to use in parallel operators

If configuration is done, hit the "Start Analysis" button and the benchmarker calculates all needed executions and starts them one after the other. This may
take some time. If the benchmarking is done, the result is shown and there is the possibility to copy the resulting Odysseus script keywords in your query.

	Control Parallelismn

